Patents by Inventor Philip Thorpe

Philip Thorpe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060228299
    Abstract: Disclosed are new phosphatidylserine binding constructs with surprising combinations of properties, and a range of diagnostic and therapeutic conjugates thereof. The new constructs effectively bind phosphatidylserine targets in disease and enhance their destruction, and can also specifically deliver attached imaging or therapeutic agents to the disease site. Also disclosed are methods of using the new construct compositions, therapeutic conjugates and combinations thereof in tumor vasculature targeting, cancer diagnosis and treatment, and for treating viral infections and other diseases.
    Type: Application
    Filed: January 24, 2006
    Publication date: October 12, 2006
    Inventors: Philip Thorpe, Troy Luster, Steven King
  • Publication number: 20060210473
    Abstract: The present invention relates generally to methods and compositions for targeting the vasculature of solid tumors using immunological- and growth factor-based reagents. In particular aspects, antibodies carrying diagnostic or therapeutic agents are targeted to the vasculature of solid tumor masses through recognition of tumor vasculature-associated antigens, such as, for example, through endoglin binding, or through the specific induction of endothelial cell surface antigens on vascular endothelial cells in solid tumors.
    Type: Application
    Filed: February 28, 2006
    Publication date: September 21, 2006
    Inventors: Philip Thorpe, Francis Burrows
  • Publication number: 20060141545
    Abstract: Disclosed are the surprising discoveries that aminophospholipids, such as phosphatidylserine and phosphatidylethanolamine, are stable and specific markers accessible on the luminal surface of tumor blood vessels, and that the administration of an anti-aminophospholipid antibody alone is sufficient to induce thrombosis, tumor necrosis and tumor regression in vivo. This invention therefore provides anti-aminophospholipid antibody-based methods and compositions for use in the specific destruction of tumor blood vessels and in the treatment of solid tumors. Although various antibody conjugates and combinations are thus provided, the use of naked, or unconjugated, anti-phosphatidylserine antibodies is a particularly important aspect of the invention, due to simplicity and effectiveness of the approach.
    Type: Application
    Filed: January 10, 2006
    Publication date: June 29, 2006
    Inventors: Philip Thorpe, Sophia Ran
  • Publication number: 20060083745
    Abstract: Disclosed is the surprising discovery that aminophospholipids, such as phosphatidylserine and phosphatidylethanolamine, are specific, accessible and stable markers of the luminal surface of tumor blood vessels. The present invention thus provides aminophospholipid-targeted diagnostic and therapeutic constructs for use in tumor intervention. Antibody-therapeutic agent conjugates and constructs that bind to aminophospholipids are particularly provided, as are methods of specifically delivering therapeutic agents, including toxins and coagulants, to the stably-expressed aminophospholipids of tumor blood vessels, thereby inducing thrombosis, necrosis and tumor regression.
    Type: Application
    Filed: October 19, 2005
    Publication date: April 20, 2006
    Inventors: Philip Thorpe, Sophia Ran, Rolf Brekken
  • Publication number: 20050136059
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: June 23, 2005
    Inventors: Philip Thorpe, Sophia Ran
  • Publication number: 20050129696
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: June 16, 2005
    Inventors: Philip Thorpe, Sophia Ran
  • Publication number: 20050123537
    Abstract: Disclosed are antibodies that specifically inhibit VEGF binding to only one (VEGFR2) of the two VEGF receptors. The antibodies effectively inhibit angiogenesis and induce tumor regression, and yet have improved safety due to their specificity. The present invention thus provides new antibody-based compositions, methods and combined protocols for treating cancer and other angiogenic diseases.
    Type: Application
    Filed: December 17, 2003
    Publication date: June 9, 2005
    Inventors: Philip Thorpe, Rolf Brekken
  • Publication number: 20050089523
    Abstract: Disclosed is the surprising discovery that aminophospholipids, such as phosphatidylserine and phosphatidylethanolamine, are specific, accessible and stable markers of the luminal surface of tumor blood vessels. The present invention thus provides aminophospholipid-targeted diagnostic and therapeutic constructs for use in tumor intervention. Antibody-therapeutic agent conjugates and constructs that bind to aminophospholipids are particularly provided, as are methods of specifically delivering therapeutic agents, including toxins and coagulants, to the stably-expressed aminophospholipids of tumor blood vessels, thereby inducing thrombosis, necrosis and tumor regression.
    Type: Application
    Filed: November 12, 2004
    Publication date: April 28, 2005
    Inventors: Philip Thorpe, Sophia Ran, Rolf Brekken
  • Publication number: 20050059578
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 17, 2005
    Inventors: Philip Thorpe, M. Soares, Jin He
  • Publication number: 20050031620
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: February 10, 2005
    Inventors: Philip Thorpe, Xianming Huang, Sophia Ran
  • Publication number: 20050025761
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: February 3, 2005
    Inventors: Philip Thorpe, M. Soares, Jin He
  • Publication number: 20050002941
    Abstract: Disclosed are surprising discoveries concerning the role of anionic phospholipids and aminophospholipids in tumor vasculature and in viral entry and spread, and compositions and methods for utilizing these findings in the treatment of cancer and viral infections. Also disclosed are advantageous antibody, immunoconjugate and duramycin-based compositions and combinations that bind and inhibit anionic phospholipids and aminophospholipids, for use in the safe and effective treatment of cancer, viral infections and related diseases.
    Type: Application
    Filed: August 15, 2003
    Publication date: January 6, 2005
    Inventors: Philip Thorpe, Xianming Huang, Sophia Ran
  • Patent number: 5165923
    Abstract: Disclosed are methods and compositions for the treatment of Hodgkin's disease and processes involving Hodgkin's disease cells or Reed-Sternberg cells, through specific elimination of Hodgkin's disease cells through the application of immunotoxin technology. The compositions of the invention include toxin conjugates composed of a Hodgkin's disease cell binding ligand conjugated to a toxin A chain moiety such as ricin A chain or deglycosylated ricin A chain, by means of a cross-linker or other conjugation which includes a disulfide bond. In preferred aspects of the invention, therapeutic amounts of conjugates composed of a CD-30 or IRac antibody or fragment thereof conjugated to deglycosylated A chain by means of an SMPT linker is administered to a Hodgkin's disease patient so as to specifically eliminate Hodgkin's disease cells without exerting significant toxicity against non-tumor cells. Also disclosed are particular hybridomas and monoclonal antibodies, and associated methodology, which may be employed, e.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: November 24, 1992
    Assignee: Imperial Cancer Research Technology
    Inventors: Philip Thorpe, Andreas Engert