Patents by Inventor Philip Trevelyan

Philip Trevelyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10197666
    Abstract: Disclosed is a method of detecting an anomalous propagation condition in a Radar system, comprising the steps of: subtracting returns received in a first receive period from returns received in a succeeding second receive period, and repeating this step for a plurality of receive periods; and if the step of subtracting gives a result in excess of a predetermined threshold in one of the plurality of receive periods, then registering this as a possible anomalous propagation condition.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: February 5, 2019
    Assignee: BAE SYSTEMS plc
    Inventors: Philip Trevelyan Edwards, John Alexander Parle, Marcus Edward Clark
  • Patent number: 9810773
    Abstract: Disclosed is a method of mitigating the effects of anomalous propagation in a Radar system, comprising the steps of: receiving a plurality of returns from a plurality of transmit pulses; calculating a difference in magnitude between each of the plurality of returns and its successor; if one of the calculated differences indicates a first step change greater than a first predetermined threshold, calculating a first average magnitude of the returns received after the first step change, and replacing the returns received before the first step change with synthesised returns having a magnitude equal to the first calculated average magnitude.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: November 7, 2017
    Assignee: BAE SYSTEMS plc
    Inventors: Bryan Robinson, Noel Turner, Philip Trevelyan Edwards
  • Publication number: 20160223648
    Abstract: Disclosed is a method of detecting an anomalous propagation condition in a Radar system, comprising the steps of: subtracting returns received in a first receive period from returns received in a succeeding second receive period, and repeating this step for a plurality of receive periods; and if the step of subtracting gives a result in excess of a predetermined threshold in one of the plurality of receive periods, then registering this as a possible anomalous propagation condition.
    Type: Application
    Filed: September 9, 2014
    Publication date: August 4, 2016
    Applicant: BAE SYSTEMS plc
    Inventors: Philip Trevelyan EDWARDS, John Alexander PARLE, Marcus Edward CLARK
  • Publication number: 20150316642
    Abstract: Disclosed is a method of mitigating the effects of anomalous propagation in a Radar system, comprising the steps of: receiving a plurality of returns from a plurality of transmit pulses; calculating a difference in magnitude between each of the plurality of returns and its successor; if one of the calculated differences indicates a first step change greater than a first predetermined threshold, calculating a first average magnitude of the returns received after the first step change, and replacing the returns received before the first step change with synthesised returns having a magnitude equal to the first calculated average magnitude.
    Type: Application
    Filed: December 12, 2013
    Publication date: November 5, 2015
    Applicant: BAE SYSTEMS plc
    Inventors: BRYAN ROBINSON, NOEL TURNER, PHILIP TREVELYAN EDWARDS
  • Patent number: 9121941
    Abstract: There is disclosed a method for counteracting the effect which crags and other such environmental formations can have on radar returns or returns in similar sensor systems. In particular it has been found that the gaps between crags can lead to false detections because of firstly the function of certain signal processors which compare the high frequency return from a certain cell to a low frequency return from that cell, and secondly the effect of smearing of the returns from one cell to another. The invention seeks to mitigate this effect by selecting the maximum low frequency return from a group of range cells as the high frequency offset.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 1, 2015
    Assignee: BAE SYSTEMS PLC
    Inventor: Philip Trevelyan Edwards
  • Patent number: 8823579
    Abstract: There is provided a sensor for use generally within the signal processing unit of a radar system. The sensor enables entity returns to be classified according to the velocity of the entity and thus allows returns to be processed according to classification. In particular, the sensor comprises a first processing means that filters an input signal using a narrow-band notch filter to output a wideband output. In particular, the sensor comprises a second processing means that filters an input signal using a wide-band notch filter to output a narrowband output. The invention provides for the comparison of the outputs to determine how the entity return is to be classified.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 2, 2014
    Assignee: BAE Systems PLC
    Inventor: Philip Trevelyan Edwards
  • Publication number: 20130016002
    Abstract: There is disclosed a method for counteracting the effect which crags and other such environmental formations can have on radar returns or returns in similar sensor systems. In particular it has been found that the gaps between crags can lead to false detections because of firstly the function of certain signal processors which compare the high frequency return from a certain cell to a low frequency return from that cell, and secondly the effect of smearing of the returns from one cell to another. The invention seeks to mitigate this effect by selecting the maximum low frequency return from a group of range cells as the high frequency offset.
    Type: Application
    Filed: December 21, 2010
    Publication date: January 17, 2013
    Applicant: BAE SYSTEMS PLC
    Inventor: Philip Trevelyan Edwards
  • Patent number: 8125374
    Abstract: Described herein is a method of preventing false detections in sensors pulse-Doppler radar mounted on a moving platform. The method comprises filtering each received burst using Doppler filtering to split each received burst into at least a fast channel and one or more slow channels. The slow channel outputs are then used to derive compensation values for the fast channel. In particular, a zero Doppler slow channel is used to derive predicted surface clutter residue information, and a near zero Doppler slow channel is used to derive additional false alarm control attenuation information. Both the predicted surface clutter residue and the false alarm control attenuation information is used to apply compensation to the fast channel and a comparison is done to select the lower of the two values to generate an output signal.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 28, 2012
    Assignee: BAE Systems PLC
    Inventor: Philip Trevelyan Edwards
  • Publication number: 20120001790
    Abstract: There is provided a sensor for use generally within the signal processing unit of a radar system. The sensor enables entity returns to be classified according to the velocity of the entity and thus allows returns to be processed according to classification. In particular the sensor comprises a first processing means that filters an input signal using a narrow-band notch filter to output a wideband output. In particular the sensor comprises a second processing means that filters an input signal using a wide-band notch filter to output a narrowband output. The invention provides for the comparison of the outputs to determine how the entity return is to be classified.
    Type: Application
    Filed: March 9, 2010
    Publication date: January 5, 2012
    Applicant: BAE SYSTEMS PLC
    Inventor: Philip Trevelyan Edwards
  • Patent number: 8018525
    Abstract: An auto-exposure algorithm for controlling a camera flash uses image processing to identify important areas of the image affected by the flash, while disregarding highly reflective/illuminated areas and uses a ND filter to linearize the flash triggering with highly reflective scenes. The camera flash is controlled by the auto-exposure algorithm in two stages: a pre-flash stage followed by a main-flash stage. In the pre-flash stage, two images are captured under the same camera settings regarding the exposure time, gain, iris and resolution. One image is captured with flash and one without. From the difference between the two images, a reference pixel is used to determine the flash intensity in the main-flash stage.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: September 13, 2011
    Assignee: Nokia Corporation
    Inventors: Philip Trevelyan, Angel Ivanov, Emil Kirilov, Ivan Vasilev
  • Patent number: 7962030
    Abstract: An intensity of a second flash is determined based at least partly on a predicted thermal condition that is influenced by a first flash that is previous to the second flash. A quality function of an image capture device is adjusted according to the determined intensity of the second flash. A scene is illuminated by the second flash at the determined flash intensity and the illuminated scene is captured and stored as an image using the adjusted quality function. In exemplary embodiments, an auto-exposure algorithm is compensated for flash intensity, which is maximized in view of temperature limits and constraints due to firing a pre-flash prior to capturing the image. Various approaches and apparatus and software are detailed.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: June 14, 2011
    Assignee: Nokia Corporation
    Inventor: Philip A. Trevelyan
  • Patent number: 7751135
    Abstract: The invention relates to an apparatus, comprising a lens and a piezoelectric element. The piezoelectric element is configured to bend in response to a voltage applied thereto. The lens and the piezoelectric element are arranged so that the bending causes at least a portion of the lens to move in at least one movement direction. The invention further relates to an according method and computer-readable medium.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: July 6, 2010
    Assignee: Nokia Corporation
    Inventors: Philip Trevelyan, Tim Mellow
  • Publication number: 20100158152
    Abstract: Described herein is a method of preventing false detections in sensors pulse-Doppler radar mounted on a moving platform. The method comprises filtering each received burst using Doppler filtering to split each received burst into at least a fast channel and one or more slow channels. The slow channel outputs are then used to derive compensation values for the fast channel. In particular, a zero Doppler slow channel is used to derive predicted surface clutter residue information, and a near zero Doppler slow channel is used to derive additional false alarm control attenuation information. Both the predicted surface clutter residue and the false alarm control attenuation information is used to apply compensation to the fast channel and a comparison is done to select the lower of the two values to generate an output signal.
    Type: Application
    Filed: August 5, 2008
    Publication date: June 24, 2010
    Applicant: BAE SYSTEMS plc
    Inventor: Philip Trevelyan Edwards
  • Publication number: 20100074610
    Abstract: An intensity of a second flash is determined based at least partly on a predicted thermal condition that is influenced by a first flash that is previous to the second flash. A quality function of an image capture device is adjusted according to the determined intensity of the second flash. A scene is illuminated by the second flash at the determined flash intensity and the illuminated scene is captured and stored as an image using the adjusted quality function. In exemplary embodiments, an auto-exposure algorithm is compensated for flash intensity, which is maximized in view of temperature limits and constraints due to firing a pre-flash prior to capturing the image. Various approaches and apparatus and software are detailed.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Inventor: Philip A. Trevelyan
  • Publication number: 20090160944
    Abstract: An auto-exposure algorithm for controlling a camera flash uses image processing to identify important areas of the image affected by the flash, while disregarding highly reflective/illuminated areas and uses a ND filter to linearize the flash triggering with highly reflective scenes. The camera flash is controlled by the auto-exposure algorithm in two stages: a pre-flash stage followed by a main-flash stage. In the pre-flash stage, two images are captured under the same camera settings regarding the exposure time, gain, iris and resolution. One image is captured with flash and one without. From the difference between the two images, a reference pixel is used to determine the flash intensity in the main-flash stage.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 25, 2009
    Inventors: Philip Trevelyan, Angel Ivanov, Emil Kirilov, Ivan Vasilev
  • Publication number: 20090141372
    Abstract: The invention relates to an apparatus, comprising a lens and a piezoelectric element. The piezoelectric element is configured to bend in response to a voltage applied thereto. The lens and the piezoelectric element are arranged so that the bending causes at least a portion of the lens to move in at least one movement direction. The invention further relates to an according method and computer-readable medium.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Inventors: Philip Trevelyan, Tim Mellow
  • Patent number: 6943623
    Abstract: Amplification circuitry for driving a load in response to an input signal, comprising: a phase locked loop, for producing a pulse width modulated signal for driving the load and input circuitry arranged to control the phase locked loop and vary the pulse width modulated signal in response to the input signal.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: September 13, 2005
    Assignee: Nokia Corporation
    Inventor: Philip Trevelyan