Patents by Inventor Philip Wong

Philip Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7145212
    Abstract: A method (and resultant structure) of forming a semiconductor device, includes forming a metal-back-gate over a substrate and a metal back-gate, forming a passivation layer on the metal back-gate to prevent the metal back-gate from reacting with radical species, and providing an intermediate gluing layer between the substrate and the metal back-gate to enhance adhesion.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: December 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Lijuan Huang, Fenton R. McFeely, Paul M. Solomon, Hon-Sum Philip Wong
  • Patent number: 7106096
    Abstract: A circuit and method of controlling integrated circuit power consumption using phase change switches where the phase change switches switchably couple and decouple power sources to logic blocks in response to a programming voltage.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Hon-Sum Philip Wong, Xinlin Wang, David R. Hanson
  • Patent number: 7074707
    Abstract: A connection device includes a plurality of re-configurable vias that connect a first metal layer to a second metal layer. An actuating element is disposed between the first metal layer and the second metal layer. The actuating element changes the configuration of the plurality of re-configurable vias to change the plurality of re-configurable vias between a conductive state and a non-conductive state.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: July 11, 2006
    Assignee: International Business Machines Corporation
    Inventors: David J. Frank, Kathryn W. Guarini, Christopher B. Murray, Xinlin Wang, Hon-Sum Philip Wong
  • Publication number: 20060057124
    Abstract: The present invention provides cardiomyocyte-like cells that have been cultured from populations of bone marrow cells. The culture method includes the use of defined media that are free of agents such a 5-azacytidine. The cardiomyocyte-like cells can be engrafted to heart tissue to repair damage resulting from an ischaemic episode.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 16, 2006
    Inventors: Winston Shim, Philip Wong
  • Patent number: 6985169
    Abstract: An image capture system for mobile communications systems includes an imaging device for capturing optical image data and a data transfer apparatus coupled to a communications device communications device for transferring the optical image data to the communications device for transmittal over a communications network.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: January 10, 2006
    Assignee: Lenovo (Singapore) Pte. Ltd.
    Inventors: Zhong John Deng, Sudhir Muniswamy Gowda, John P. Karidis, Dale Jonathan Pearson, Rama Nand Singh, Hon-Sum Philip Wong, Jungwook Yang
  • Patent number: 6964871
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber or other testing zone, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the testing zone. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: November 15, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Douglas E. Bell, Gary T. Neel, T. Philip Wong
  • Patent number: 6959247
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 25, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Allan Javier Caban, David K. Boehm
  • Patent number: 6953693
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: October 11, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Patent number: 6946299
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: September 20, 2005
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm
  • Patent number: 6891227
    Abstract: A self-aligned carbon-nanotube field effect transistor semiconductor device comprises a carbon-nanotube deposited on a substrate, a source and a drain formed at a first end and a second end of the carbon-nanotube, respectively, and a gate formed substantially over a portion of the carbon-nanotube, separated from the carbon-nanotube by a dielectric film.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: Joerg Appenzeller, Phaedon Avouris, Kevin K. Chan, Richard Martel, Hon-Sum Philip Wong, Philip G. Collins
  • Patent number: 6864520
    Abstract: A method (and structure) for an electronic chip having at least one layer of material for which a carrier mobility of a first carrier type is higher in a first crystal surface than in a second crystal surface and for which a carrier mobility of a second carrier type is higher in the second crystal surface than the first crystal surface includes a first device having at least one component fabricated on the first crystal surface of the material, wherein an activity of the component of the first device involves primarily the first carrier type, and a second device having at least one component fabricated on the second crystal surface of the material, wherein an activity of the component of the second device involves primarily the second carrier type.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Massimo V. Fischetti, Steven E. Laux, Paul M. Solomon, Hon-Sum Philip Wong
  • Publication number: 20040235284
    Abstract: A method (and resultant structure) of forming a semiconductor device, includes forming a metal-back-gate over a substrate and a metal back-gate, forming a passivation layer on the metal back-gate to prevent the metal back-gate from reacting with radical species, and providing an intermediate gluing layer between the substrate and the metal back-gate to enhance adhesion.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 25, 2004
    Applicant: International Business Machines Corporation
    Inventors: Kevin K. Chan, Lijuan Huang, Fenton R. McFeely, Paul M. Solomon, Hon-Sum Philip Wong
  • Patent number: 6797604
    Abstract: A method (and resultant structure) of forming a semiconductor device, includes forming a metal-back-gate over a substrate and a metal back-gate, forming a passivation layer on the metal back-gate to prevent the metal back-gate from reacting with radical species, and providing an intermediate gluing layer between the substrate and the metal back-gate to enhance adhesion.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: September 28, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Lijuan Huang, Fenton R. McFeely, Paul M. Solomon, Hon-Sum Philip Wong
  • Publication number: 20040182703
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber or other testing zone, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the testing zone. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: January 26, 2004
    Publication date: September 23, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Douglas E. Bell, Gary T. Neel, T. Philip Wong
  • Publication number: 20040104131
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 3, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Patent number: 6743635
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: June 1, 2004
    Assignee: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss
  • Publication number: 20040099540
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 27, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Allan Javier Caban, David K. Boehm
  • Publication number: 20040094433
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm
  • Publication number: 20040094432
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong
  • Publication number: 20030203498
    Abstract: A system for measuring a glucose level in a blood sample includes a test strip and a meter. The test strip includes a sample chamber, a working electrode, a counter electrode, fill-detect electrodes, and an auto-on conductor. A reagent layer is disposed in the sample chamber. The auto-on conductor causes the meter to wake up and perform a test strip sequence when the test strip is inserted in the meter. The meter uses the working and counter electrodes to initially detect the blood sample in the sample chamber and uses the fill-detect electrodes to check that the blood sample has mixed with the reagent layer. The meter applies an assay voltage between the working and counter electrodes and measures the resulting current. The meter calculates the glucose level based on the measured current and calibration data saved in memory from a removable data storage device associated with the test strip.
    Type: Application
    Filed: November 1, 2002
    Publication date: October 30, 2003
    Applicant: Home Diagnostics, Inc.
    Inventors: Gary T. Neel, Douglas E. Bell, T. Philip Wong, Houston F. Voss, Allan Javier Caban, David K. Boehm