Patents by Inventor Philipp Kreutzer

Philipp Kreutzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10408135
    Abstract: A method for operating a gas turbine below the nominal power includes: determining a lower power threshold value of the gas turbine which causes the gas turbine to leave a CO-emission-compliant partial load range of the gas turbine; providing a specified threshold value for output gas turbine power, wherein the specified threshold value is less than the nominal power of the gas turbine; and operating the gas turbine at an output gas turbine power above the specified threshold value at a constant exhaust gas temperature, wherein the inlet guide blades of a compressor of the gas turbine are closed further in order to reduce the output gas turbine power. A sufficiently large valve is selected for the specified threshold value so that increases of the primary zone temperature, combustion temperature, and exhaust temperature extend over a CO-emission-compliant partial load range of the gas turbine that is as large as possible.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: September 10, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thorsten Engler, Markus Gorynski, Manuel Gutermuth, Philipp Kreutzer, Marco Link, Nicolas Savilius, Kai Suselbeck, Marc Tertilt
  • Patent number: 10167782
    Abstract: A gas turbine having a compressor, a turbine unit, at least one combustion chamber and a secondary air system, which secondary air system has at least one cooling line having a compressor-side inlet for removing cooling air from the compressor and a turbine-side outlet for leading the cooling air onward into the turbine unit, wherein the cooling air line at the compressor-side inlet is connected fluidically to a housing opening of the gas turbine which adjoins a cavity in the gas turbine and which, during operation, guides compressor air, and wherein the housing opening is formed as a manhole.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: January 1, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Philipp Kreutzer, Marco Larson, Ansgar Sternemann
  • Patent number: 10077718
    Abstract: A method for operating a gas turbine plant having a gas turbine and an electric generator driven by the gas turbine. The method includes detecting an instantaneous power of the gas turbine plant; comparing the detected instantaneous power with a power limit value; and limiting the instantaneous power when the result of the comparison is that the detected instantaneous power is equal to or greater than the power limit value. A step of detecting at least one operating parameter of the gas turbine plant and a step of determining the power limit value as a function of the at least one detected operating parameter are then implemented, wherein the at least one operating parameter of the gas turbine plant includes an ambient pressure and the power limit value is increased when the ambient pressure increases.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: September 18, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan-Dirk Beiler, Hans-Georg Gamm, Thomas Kerstiens, Marco Larson, Rosa-Eos Mühlhölzer, Florian Purps, Oliver Schneider, Marc Schäfer, Philipp Kreutzer, Marc Reinberg, Martin Stapper
  • Patent number: 9915166
    Abstract: A gas turbine includes an intake tract and a compressor having a compressor flow channel. The compressor further includes an inlet guide vane row positioned in the compressor flow channel having inlet guide vanes that can be adjusted. The gas turbine has an icing sensor unit having at least one sensor arranged between a first compressor blade row and a first compressor guide vane row. The first compressor blade row is thereby arranged in the compressor flow channel directly downstream of the inlet guide vane row, and the first compressor guide vane row is arranged directly downstream of the first compressor blade row. A method detects an imminent icing of the compressor, and the compressor is safeguarded therefrom such that at least inlet guide vanes of the inlet guide vane row are adjusted such that the acceleration of an intake air mass flow is reduced.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: March 13, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thorsten Engler, Markus Gorynski, Manuel Gutermuth, Philipp Kreutzer, Marco Link, Nicolas Savilius, Kai Suselbeck, Marc Tertilt
  • Publication number: 20170107912
    Abstract: A method for operating a gas turbine plant having a gas turbine and an electric generator driven by the gas turbine. The method includes detecting an instantaneous power of the gas turbine plant; comparing the detected instantaneous power with a power limit value; and limiting the instantaneous power when the result of the comparison is that the detected instantaneous power is equal to or greater than the power limit value. A step of detecting at least one operating parameter of the gas turbine plant and a step of determining the power limit value as a function of the at least one detected operating parameter are then implemented, wherein the at least one operating parameter of the gas turbine plant includes an ambient pressure and the power limit value is increased when the ambient pressure increases.
    Type: Application
    Filed: March 3, 2015
    Publication date: April 20, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Jan-Dirk Beiler, Hans-Georg Gamm, Thomas Kerstiens, Marco Larson, Rosa-Eos Mühlhölzer, Florian Purps, Oliver Schneider, Marc Schäfer, Philipp Kreutzer, Marc Reinberg, Martin Stapper
  • Publication number: 20160201560
    Abstract: A gas turbine having a compressor, a turbine unit, at least one combustion chamber and a secondary air system, which secondary air system has at least one cooling line having a compressor-side inlet for removing cooling air from the compressor and a turbine-side outlet for leading the cooling air onward into the turbine unit, wherein the cooling air line at the compressor-side inlet is connected fluidically to a housing opening of the gas turbine which adjoins a cavity in the gas turbine and which, during operation, guides compressor air, and wherein the housing opening is formed as a manhole.
    Type: Application
    Filed: August 26, 2014
    Publication date: July 14, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Philipp Kreutzer, Marco Larson, Ansgar Sternemann
  • Publication number: 20160032747
    Abstract: A sealing element for sealing a gap between two components, which can thermally move relative to each other and each have two substantially parallel component grooves, wherein the sealing element is directed along a main line and has, in a cross section substantially perpendicular to the main line, a first and second end segment and a middle region arranged between the end segments, to ensure an effective seal in the event of thermal expansions of the components that are comparatively large radially and to reduce thermal stresses and crack formations on the components. A third end segment having substantially the same extension direction as the first end segment is arranged on the middle region in parallel with the first end segment and a fourth end segment having substantially the same extension direction as the second end segment is arranged on the middle region in parallel with the second end segment.
    Type: Application
    Filed: March 12, 2014
    Publication date: February 4, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Simon Bez, Ningsih Flohr, Vera Kristin Franke, Pascal Hinkerohe, Frederic Etienne Kracht, Philipp Kreutzer, Rudolf Kuperkoch, Florian Migas, Frank Preuten, Oliver Schneider, Hans Thermann
  • Publication number: 20160024960
    Abstract: A gas turbine includes an intake tract and a compressor having a compressor flow channel. The compressor further includes an inlet guide vane row positioned in the compressor flow channel having inlet guide vanes that can be adjusted. The gas turbine has an icing sensor unit having at least one sensor arranged between a first compressor blade row and a first compressor guide vane row. The first compressor blade row is thereby arranged in the compressor flow channel directly downstream of the inlet guide vane row, and the first compressor guide vane row is arranged directly downstream of the first compressor blade row. A method detects an imminent icing of the compressor, and the compressor is safeguarded therefrom such that at least inlet guide vanes of the inlet guide vane row are adjusted such that the acceleration of an intake air mass flow is reduced.
    Type: Application
    Filed: February 20, 2014
    Publication date: January 28, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Thorsten Engler, Markus Gorynski, Manuel Gutermuth, Philipp Kreutzer, Marco Link, Nicolas Savilius, Kai Suselbeck, Marc Tertilt
  • Publication number: 20160010566
    Abstract: A method for operating a gas turbine below its rated power, in which CO emissions in the exhaust gas of the gas turbine increase with a reduction of the output gas turbine power, wherein, if a predefined threshold value, which can be selected as desired, for the CO emissions is reached or if a predefined threshold value, specified in relative or absolute terms, for the output gas turbine power is undershot, the combustion temperature in the combustion chamber of the gas turbine is increased. To operate the gas turbine with low emissions, for a constant power output, the exhaust-gas temperature increase generated at the outlet of the gas turbine as a result of the combustion temperature increase is at least partially compensated through the addition of a liquid or vaporous medium.
    Type: Application
    Filed: February 6, 2014
    Publication date: January 14, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Andreas Bottcher, Eberhard Deuker, Andre Kluge, Philipp Kreutzer, Marco Link, Ansgar Sternemann, Marc Tertilt, Martin Wilke
  • Publication number: 20150369137
    Abstract: A method for operating a gas turbine below the nominal power includes: determining a lower power threshold value of the gas turbine which causes the gas turbine to leave a CO-emission-compliant partial load range of the gas turbine; providing a specified threshold value for output gas turbine power, wherein the specified threshold value is less than the nominal power of the gas turbine; and operating the gas turbine at an output gas turbine power above the specified threshold value at a constant exhaust gas temperature, wherein the inlet guide blades of a compressor of the gas turbine are closed further in order to reduce the output gas turbine power. A sufficiently large valve is selected for the specified threshold value so that increases of the primary zone temperature, combustion temperature, and exhaust temperature extend over a CO-emission-compliant partial load range of the gas turbine that is as large as possible.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 24, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Thorsten Engler, Markus Gorynski, Manuel Gutermuth, Philipp Kreutzer, Marco Link, Nicolas Savilius, Kai Suselbeck, Marc Tertilt