Patents by Inventor PHILIPP RENE SPYCHER

PHILIPP RENE SPYCHER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240279634
    Abstract: Site-specific modification of proteins with microbial transglutaminase (MTG) is a powerful and versatile strategy for a controlled modification of proteins under physiological conditions. We present evidence that solid-phase microbead-immobilization can be used to site-specifically and efficiently attach different functional molecules important for further downstream applications to proteins of therapeutic relevance including scFV, Fab-fragment and antibodies. We demonstrate that MTG remained firmly immobilized with no detectable column bleeding and that enzyme activity was sustained during continuous operation, which allowed for a convenient recycling of the enzyme, thus going beyond solution-phase MTG conjugation. In addition it is showed that immobilized MTG shows enhanced selectivity towards a certain residue in the presence of several reactive residues which are all targeted if the conjugation was carried out in solution.
    Type: Application
    Filed: January 30, 2024
    Publication date: August 22, 2024
    Inventors: Philipp Rene SPYCHER, Martin BEHE, Roger SCHIBLI, David HURWITZ, Olivier KREIS
  • Publication number: 20220333093
    Abstract: Site-specific modification of proteins with microbial transglutaminase (MTG) is a powerful and versatile strategy for a controlled modification of proteins under physiological conditions. We present evidence that solid-phase microbead-immobilization can be used to site-specifically and efficiently attach different functional molecules important for further downstream applications to proteins of therapeutic relevance including scFV, Fab-fragment and antibodies. We demonstrate that MTG remained firmly immobilized with no detectable column bleeding and that enzyme activity was sustained during continuous operation, which allowed for a convenient recycling of the enzyme, thus going beyond solution-phase MTG conjugation. In addition it is showed that immobilized MTG shows enhanced selectivity towards a certain residue in the presence of several reactive residues which are all targeted if the conjugation was carried out in solution.
    Type: Application
    Filed: March 25, 2022
    Publication date: October 20, 2022
    Inventors: Philipp Rene SPYCHER, Martin BEHE, Roger SCHIBLI, David HURWITZ, Olivier KREIS
  • Patent number: 11396649
    Abstract: Site-specific modification of proteins with microbial transglutaminase (MTG) is a powerful and versatile strategy for a controlled modification of proteins under physiological conditions. Solid-phase microbead-immobilization is used to site-specifically and efficiently attach different functional molecules important for further downstream applications to proteins of therapeutic relevance including scFV, Fab-fragment and antibodies. MTG remained firmly immobilized with no detectable column bleeding and enzyme activity was sustained during continuous operation. Immobilized MTG shows enhanced selectivity towards a certain residue in the presence of several reactive residues which are all targeted when the conjugation was carried out in solution. The generation of dual site-specifically conjugated IgG1 with immobilized and MTG in solution is reported, i.e. site-specific conjugation to glutamine and lysine residues of IgG1 antibody.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: July 26, 2022
    Assignee: PAUL SCHERRER INSTITUT
    Inventors: Philipp Rene Spycher, Martin Behe, Roger Schibli, David Hurwitz, Olivier Kreis
  • Publication number: 20190194641
    Abstract: Site-specific modification of proteins with microbial transglutaminase (MTG) is a powerful and versatile strategy for a controlled modification of proteins under physiological conditions. Solid-phase microbead-immobilization is used to site-specifically and efficiently attach different functional molecules important for further downstream applications to proteins of therapeutic relevance including scFV, Fab-fragment and antibodies. MTG remained firmly immobilized with no detectable column bleeding and enzyme activity was sustained during continuous operation. Immobilized MTG shows enhanced selectivity towards a certain residue in the presence of several reactive residues which are all targeted when the conjugation was carried out in solution. The generation of dual site-specifically conjugated IgG1 with immobilized and MTG in solution is reported, i.e. site-specific conjugation to glutamine and lysine residues of IgG1 antibody.
    Type: Application
    Filed: July 11, 2017
    Publication date: June 27, 2019
    Inventors: PHILIPP RENE SPYCHER, MARTIN BEHE, ROGER SCHIBLI, DAVID HURWITZ