Patents by Inventor Philipp Staudinger

Philipp Staudinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11756788
    Abstract: A method for fabricating a metastable crystalline structure is provided. The method includes providing a base substrate, wherein the base substrate comprises an insulating layer. The method further includes providing a metastable seed crystal on the base substrate, wherein the metastable seed crystal has a predefined metastable crystal phase or a predefined metastable composition. The method further includes forming a template structure above the base substrate, wherein the template structure covers at least a part of the metastable seed crystal. The method further includes growing the metastable crystalline structure with the predefined metastable crystal phase or the predefined metastable composition of the seed crystal inside the template structure. The growing of the metastable crystalline structure is nucleated from the seed crystal. Crystalline structures produced by the methods described herein are also provided.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: September 12, 2023
    Assignee: International Business Machines Corporation
    Inventors: Philipp Staudinger, Heinz Schmid
  • Publication number: 20220013355
    Abstract: A method for fabricating a metastable crystalline structure is provided. The method includes providing a base substrate, wherein the base substrate comprises an insulating layer. The method further includes providing a metastable seed crystal on the base substrate, wherein the metastable seed crystal has a predefined metastable crystal phase or a predefined metastable composition. The method further includes forming a template structure above the base substrate, wherein the template structure covers at least a part of the metastable seed crystal. The method further includes growing the metastable crystalline structure with the predefined metastable crystal phase or the predefined metastable composition of the seed crystal inside the template structure. The growing of the metastable crystalline structure is nucleated from the seed crystal. Crystalline structures produced by the methods described herein are also provided.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 13, 2022
    Inventors: Philipp Staudinger, Heinz Schmid
  • Patent number: 10958040
    Abstract: A method for fabricating an ellipsoidal or semi-ellipsoidal semiconductor structure includes steps of providing a semiconductor substrate and fabricating an ellipsoidal or semi-ellipsoidal cavity structure on the semiconductor substrate. The cavity structure encompasses a seed surface of the semiconductor substrate. The method includes a further step of growing the ellipsoidal or semi-ellipsoidal semiconductor structure within the ellipsoidal or semi-ellipsoidal cavity structure from the seed surface of the semiconductor substrate. Fabricating the cavity structure includes arranging a droplet comprising a sacrificial material on the semiconductor substrate, forming a layer of a coating material on the semiconductor substrate and the droplet, and selectively removing the sacrificial material of the droplet to expose the cavity structure.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Noelia Vico Trivino, Svenja Mauthe, Philipp Staudinger, Kirsten Emilie Moselund
  • Publication number: 20210083453
    Abstract: A method for fabricating an ellipsoidal or semi-ellipsoidal semiconductor structure includes steps of providing a semiconductor substrate and fabricating an ellipsoidal or semi-ellipsoidal cavity structure on the semiconductor substrate. The cavity structure encompasses a seed surface of the semiconductor substrate. The method includes a further step of growing the ellipsoidal or semi-ellipsoidal semiconductor structure within the ellipsoidal or semi-ellipsoidal cavity structure from the seed surface of the semiconductor substrate. Fabricating the cavity structure includes arranging a droplet comprising a sacrificial material on the semiconductor substrate, forming a layer of a coating material on the semiconductor substrate and the droplet, and selectively removing the sacrificial material of the droplet to expose the cavity structure.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Noelia Vico Trivino, Svenja Mauthe, Philipp Staudinger, Kirsten Emilie Moselund
  • Patent number: 10840093
    Abstract: A method for fabricating a semiconductor substrate comprises providing a crystalline base substrate, forming an insulating layer on the crystalline base substrate and forming a trench in the insulating layer. This exposes a seed surface of the base substrate. The trench has sidewalls and a bottom. The bottom corresponds to the seed surface of the base substrate. The method further comprises growing, at a first growth step, an elongated seed structure in the trench from the seed surface of the substrate and forming a cavity structure above the insulating layer. The cavity structure covers the elongated seed structure and extends laterally to the elongated seed structure. The method comprises a further step of growing, at a second growth step, the semiconductor substrate in the cavity structure from the elongated seed structure. The invention is notably also directed to corresponding semiconductor structures and corresponding semiconductor substrates.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yannick Baumgartner, Lukas Czornomaz, Heinz Schmid, Philipp Staudinger
  • Publication number: 20200083042
    Abstract: A method for fabricating a semiconductor substrate comprises providing a crystalline base substrate, forming an insulating layer on the crystalline base substrate and forming a trench in the insulating layer. This exposes a seed surface of the base substrate. The trench has sidewalls and a bottom. The bottom corresponds to the seed surface of the base substrate. The method further comprises growing, at a first growth step, an elongated seed structure in the trench from the seed surface of the substrate and forming a cavity structure above the insulating layer. The cavity structure covers the elongated seed structure and extends laterally to the elongated seed structure. The method comprises a further step of growing, at a second growth step, the semiconductor substrate in the cavity structure from the elongated seed structure. The invention is notably also directed to corresponding semiconductor structures and corresponding semiconductor substrates.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Yannick Baumgartner, Lukas Czornomaz, Heinz Schmid, Philipp Staudinger