Patents by Inventor Philippe Beaulieu

Philippe Beaulieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11685982
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: June 27, 2023
    Assignees: Tenneco Inc., Le Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, Jr.
  • Publication number: 20230037455
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: September 30, 2022
    Publication date: February 9, 2023
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Patent number: 10953340
    Abstract: A toy construction element includes a first face recessed from a second face by a recess height, a first peg extending from the second face, and an engaging member disposed on the first face. The first peg has a first peg height relative to the second face. The engaging member may include a column portion and a peg portion, wherein the column portion extends from a first end portion at the first face to a second end portion at which the peg portion is disposed. The column portion may have a column height substantially equal to the recess height, and the peg portion may have a peg portion height substantially equal to the first peg height. A toy construction element may be part of a toy construction assembly, in which an engaging member of the toy construction element connects to a hole defined by a flexible member.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 23, 2021
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventors: Louis-Philippe Beaulieu, Muryllo Cardoso Figueiredo De Matos
  • Patent number: 10926334
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 23, 2021
    Assignee: Tenneco Inc.
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10837087
    Abstract: A sintered material for use in an internal combustion engine, such as a valve seat insert, is provided. The material includes a pressed base powder metal mixture and a Cu-rich phase infiltrated in pores of the base powder metal mixture. The base powder metal mixture includes at least one of Mo and W, and at least one additive, such as B, N, and/or C. The amount of the Mo and/or W is 50 wt. % to 85 wt. %, based on the total weight of the material. The at least one additive is present in a total amount of 0.2 to 25 wt. %, based on the total weight of the material, and the Cu-rich phase is present in an amount of 15 wt. % to 50 wt. %, based on the total weight of the material. The material also has a thermal conductivity of at least 70 W/mK.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: November 17, 2020
    Assignee: Tenneco Inc.
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr.
  • Publication number: 20200216935
    Abstract: A powder metal material and sintered component formed of the powder metal material is provided. The powder metal material comprises a plurality of particles including copper in an amount of 10 wt. % to 50 wt. %, based on the total weight of the particles. The particles also include at least one of iron, nickel, an cobalt. The particles further include at least one of boron, carbon, chromium, manganese, molybdenum, nitrogen, niobium, phosphorous, sulfur, aluminum, bismuth, silicon, tin, tantalum, titanium, vanadium, tungsten, hafnium, and zirconium. The particles are formed by atomizing and optionally heat treating. The particles consist of a first area and a second area, wherein the first area is copper-rich and the second area includes hard phases. The hard phases being present in an amount of at least 33 wt. %, based on the total weight of the second area.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Philippe Beaulieu, Mathieu Boisvert, Denis B. Christopherson, JR.
  • Publication number: 20200156156
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Philippe BEAULIEU, Denis B. Christopherson, JR., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Publication number: 20200061484
    Abstract: A toy construction element includes a first face recessed from a second face by a recess height, a first peg extending from the second face, and an engaging member disposed on the first face. The first peg has a first peg height relative to the second face. The engaging member may include a column portion and a peg portion, wherein the column portion extends from a first end portion at the first face to a second end portion at which the peg portion is disposed. The column portion may have a column height substantially equal to the recess height, and the peg portion may have a peg portion height substantially equal to the first peg height. A toy construction element may be part of a toy construction assembly, in which an engaging member of the toy construction element connects to a hole defined by a flexible member.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Inventors: Louis-Philippe BEAULIEU, Muryllo Cardoso Figueiredo DE MATOS
  • Patent number: 10543535
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 28, 2020
    Assignees: Tenneco Inc., Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10518189
    Abstract: A tool for separating blocks and other elements from an assembly of toy construction elements is disclosed. The tool may include a coupling end that can attach to pegs and/or openings in a block and is configured for easily prying off the block. The tool may include a moving member that can be used to configure the coupling end in two different configurations for coupling to either the top or bottom of a block.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 31, 2019
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventors: Amélie Lachance, Louis-Philippe Beaulieu, Steve Ross
  • Patent number: 10478742
    Abstract: A toy construction element includes a first face recessed from a second face by a recess height, a first peg extending from the second face, and an engaging member disposed on the first face. The first peg has a first peg height relative to the second face. The engaging member may include a column portion and a peg portion, wherein the column portion extends from a first end portion at the first face to a second end portion at which the peg portion is disposed. The column portion may have a column height substantially equal to the recess height, and the peg portion may have a peg portion height substantially equal to the first peg height. A toy construction element may be part of a toy construction assembly, in which an engaging member of the toy construction element connects to a hole defined by a flexible member.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 19, 2019
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventors: Louis-Philippe Beaulieu, Muryllo Cardoso Figueiredo De Matos
  • Publication number: 20190275441
    Abstract: A toy construction element includes a first face recessed from a second face by a recess height, a first peg extending from the second face, and an engaging member disposed on the first face. The first peg has a first peg height relative to the second face. The engaging member may include a column portion and a peg portion, wherein the column portion extends from a first end portion at the first face to a second end portion at which the peg portion is disposed. The column portion may have a column height substantially equal to the recess height, and the peg portion may have a peg portion height substantially equal to the first peg height. A toy construction element may be part of a toy construction assembly, in which an engaging member of the toy construction element connects to a hole defined by a flexible member.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Louis-Philippe BEAULIEU, Muryllo Cardoso Figueiredo DE MATOS
  • Publication number: 20190083893
    Abstract: A tool for separating blocks and other elements from an assembly of toy construction elements is disclosed. The tool may include a coupling end that can attach to pegs and/or openings in a block and is configured for easily prying off the block. The tool may include a moving member that can be used to configure the coupling end in two different configurations for coupling to either the top or bottom of a block.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Amélie Lachance, Louis-Philippe Beaulieu, Steve Ross
  • Patent number: 10124411
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 13, 2018
    Assignees: Federal-Mogul LLC, La Corporation de l'Ecole Polytechnique de Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance
  • Publication number: 20180169751
    Abstract: A thermometric powder metal material for testing to replicate an actual powder material during use of the actual powder metal material in an internal combustion engine is provided. The thermometric powder metal material includes pores and has a decrease in hardness as a function of temperature according to the following equation: D Hardness/D Temperature=>0.5 HV/° C. The properties of the actual powder metal material, when the actual powder metal is used in an internal combustion engine, can be estimated using the thermometric powder metal material by first adjusting the thermal conductivity of the thermometric powder metal material or controlling the porosity of the thermometric powder metal material to replicate the actual powder metal material, and then subjecting thermometric powder metal material to an engine test. For example, the thermal conductivity can be adjusted by infiltrating the thermometric powder metal material with copper.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Philippe BEAULIEU, Denis B. CHRISTOPHERSON, JR., Leslie John FARTHING, Gilles L'ESPERANCE, Olivier SIOUI-LATULIPPE
  • Publication number: 20180105906
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: October 16, 2017
    Publication date: April 19, 2018
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Publication number: 20180104745
    Abstract: An improved method of manufacturing a powder metal material by water, gas, plasma, or rotating disk atomization is provided. The method includes adding at least one additive to a melted metal material before or during the atomization process. The at least one additive forms a protective gas atmosphere surrounding the melted metal material which is at least three times greater than the volume of melt to be treated. The protective atmosphere prevents introduction or re-introduction of contaminants, such as sulfur (S) and oxygen (O2), into the material. The atomized particles produced include at least one of the following advantages: median circularity of at least 0.60, median roundness of at least 0.60, less internal pores, less internal oxides, and an increased sphericity of the microstructural phases and/or constituents.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 19, 2018
    Inventors: Gilles L'ESPERANCE, Mathieu BOISVERT, Denis B. CHRISTOPHERSON, JR., Philippe BEAULIEU
  • Patent number: D860334
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 17, 2019
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventors: Amélie Lachance, Louis-Philippe Beaulieu, Steve Ross
  • Patent number: D895024
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 1, 2020
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventor: Louis-Philippe Beaulieu
  • Patent number: D977027
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 31, 2023
    Assignee: Mattel-MEGA Holdings (US), LLC
    Inventors: Louis-Philippe Beaulieu, Pierre Dion, Hugo Messier