Patents by Inventor Philippe Gournay

Philippe Gournay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8751246
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame has a number of time domain audio samples, having a predictive coding analysis stage for determining information on coefficients of a synthesis filter and information on a prediction domain frame based on a frame of audio samples. The audio encoder further has a frequency domain transformer for transforming a frame of audio samples to the frequency domain to obtain a frame spectrum and an encoding domain decider for deciding whether encoded data for a frame is based on the information on the coefficients and on the information on the prediction domain frame, or based on the frame spectrum.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 10, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Nikolaus Rettelbach
  • Patent number: 8712764
    Abstract: A device and a method for quantizing, in a super-frame including a sequence of frames, LPC filters calculated during the frames of the sequence. The LPC filter quantizing device and method comprises: an absolute quantizer for first quantizing one of the LPC filters using absolute quantization; and at least one quantizer of the other LPC filters using a quantization mode selected from the group consisting of absolute quantization and differential quantization relative to at least one previously quantized filter amongst the LPC filters. For inverse quantizing, at least the first quantized LPC filter is received and an inverse quantizer inverse quantizes the first quantized LPC filter using absolute inverse quantization. If any quantized LPC filter other than the first quantized LPC filter is received, an inverse quantizer inverse quantizes this quantized LPC filter using one of absolute inverse quantization and differential inverse quantization relative to at least one previously received quantized LPC filter.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 29, 2014
    Assignee: Voiceage Corporation
    Inventors: Philippe Gournay, Bruno Bessette, Redwan Salami
  • Patent number: 8595019
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 26, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Voiceage Corporation
    Inventors: Ralf Geiger, Bernhard Grill, Bruno Bessette, Philippe Gournay, Guillaume Fuchs, Markus Multrus, Max Neuendorf, Gerald Schuller
  • Patent number: 8484038
    Abstract: An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: July 9, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation, Koninklijke Philips Electronics N.V., Dolby International AB
    Inventors: Bruno Bessette, Max Neuendorf, Ralf Geiger, Philippe Gournay, Roch Lefebvre, Bernhard Grill, Jeremie Lecomte, Stefan Bayer, Nikolaus Rettelbach, Lars Villemoes, Redwan Salami, Albertus C. Den Brinker
  • Patent number: 8447620
    Abstract: An audio encoder for encoding an audio signal has a first coding branch, the first coding branch comprising a first converter for converting a signal from a time domain into a frequency domain. Furthermore, the audio encoder has a second coding branch comprising a second time/frequency converter. Additionally, a signal analyzer for analyzing the audio signal is provided. The signal analyzer, on the hand, determines whether an audio portion is effective in the encoder output signal as a first encoded signal from the first encoding branch or as a second encoded signal from a second encoding branch. On the other hand, the signal analyzer determines a time/frequency resolution to be applied by the converters when generating the encoded signals. An output interface includes, in addition to the first encoded signal and the second encoded signal, a resolution information identifying the resolution used by the first time/frequency converter and used by the second time/frequency converter.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: May 21, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation
    Inventors: Max Neuendorf, Stefan Bayer, Jérémie Lecomte, Guillaume Fuchs, Julien Robilliard, Nikolaus Rettelbach, Frederik Nagel, Ralf Geiger, Markus Multrus, Bernhard Grill, Philippe Gournay, Redwan Salami
  • Patent number: 8332213
    Abstract: A multi-reference quantization device and method for quantizing an input LPC filter, comprises a plurality of differential quantizers using respective, different references, and a selector of a reference amongst the different references of the differential quantizers using a reference selection criterion. The input LPC filter is differentially quantized by the differential quantizer using the selected reference. A device and method for inverse quantizing a multi-reference differentially quantized LPC filter extracted from a bitstream, comprises an extractor from the bitstream of information about a reference amongst a plurality of possible references used for quantizing the multi-reference differentially quantized LPC filter, and a differential inverse quantizer using the reference corresponding to the extracted reference information to inverse quantize the multi-reference differentially quantized LPC filter.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: December 11, 2012
    Assignee: VoiceAge Corporation
    Inventors: Philippe Gournay, Bruno Bessette, Redwan Salami
  • Patent number: 8321210
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 27, 2012
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20120271644
    Abstract: An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Inventors: Bruno Bessette, Max Neuendorf, Ralf Geiger, Philippe Gournay, Roch Lefebvre, Bernhard Grill, Jeremie Lecomte, Stefan Bayer, Nikolaus Rettelbach, Lars Villemoes, Redwan Salami, Albertus C. Den Brinker
  • Patent number: 8255207
    Abstract: A method and device for concealing frame erasures caused by frames of an encoded sound signal erased during transmission from an encoder to a decoder and for recovery of the decoder after frame erasures comprise, in the encoder, determining concealment/recovery parameters including at least phase information related to frames of the encoded sound signal. The concealment/recovery parameters determined in the encoder are transmitted to the decoder and, in the decoder, frame erasure concealment is conducted in response to the received concealment/recovery parameters. The frame erasure concealment comprises resynchronizing, in response to the received phase information, the erasure-concealed frames with corresponding frames of the sound signal encoded at the encoder. When no concealment/recovery parameters are transmitted to the decoder, a phase information of each frame of the encoded sound signal that has been erased during transmission from the encoder to the decoder is estimated in the decoder.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 28, 2012
    Assignee: Voiceage Corporation
    Inventors: Tommy Vaillancourt, Milan Jelinek, Philippe Gournay, Redwan Salami
  • Publication number: 20110238425
    Abstract: An audio encoder for encoding an audio signal has a first coding branch, the first coding branch comprising a first converter for converting a signal from a time domain into a frequency domain. Furthermore, the audio encoder has a second coding branch comprising a second time/frequency converter. Additionally, a signal analyzer for analyzing the audio signal is provided. The signal analyzer, on the hand, determines whether an audio portion is effective in the encoder output signal as a first encoded signal from the first encoding branch or as a second encoded signal from a second encoding branch. On the other hand, the signal analyzer determines a time/frequency resolution to be applied by the converters when generating the encoded signals. An output interface includes, in addition to the first encoded signal and the second encoded signal, a resolution information identifying the resolution used by the first time/frequency converter and used by the second time/frequency converter.
    Type: Application
    Filed: April 6, 2011
    Publication date: September 29, 2011
    Inventors: Max Neuendorf, Stefan Bayer, Jérémie Lecomte, Guillaume Fuchs, Julien Robilliard, Nikolaus Rettelbach, Frederik Nagel, Ralf Geiger, Markus Multrus, Bernhard Grill, Philippe Gournay, Redwan Salami
  • Publication number: 20110202355
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20110202354
    Abstract: An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and wherein the second encoding branch furthermore has a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach
  • Publication number: 20110173008
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame has a number of time domain audio samples, having a predictive coding analysis stage for determining information on coefficients of a synthesis filter and information on a prediction domain frame based on a frame of audio samples. The audio encoder further has a frequency domain transformer for transforming a frame of audio samples to the frequency domain to obtain a frame spectrum and an encoding domain decider for deciding whether encoded data for a frame is based on the information on the coefficients and on the information on the prediction domain frame, or based on the frame spectrum.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Nikolaus Rettelbach
  • Publication number: 20110173010
    Abstract: An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Bruno Bessette, Bernhard Grill
  • Publication number: 20110173011
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame includes a number of time domain audio samples. The audio encoder includes a predictive coding analysis stage for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder further includes a time-aliasing introducing transformer for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder includes a redundancy reducing encoder for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Ralf Geiger, Bernhard Grill, Bruno Bessette, Philippe Gournay, Guillaume Fuchs, Markus Multrus, Max Neuendorf, Gerald Schuller
  • Patent number: 7693708
    Abstract: Apparatus is provided that includes at least one entity for transmitting speech signals in a discontinuous transmission mode including transmitting speech frames interspersed with frames including comfort noise parameters during periods of speech pauses. The entit(ies) include a first entity for estimating a current noise value. In addition, the apparatus includes a second entity for selectively controlling a rate at which the frames including comfort noise parameters are transmitted during the periods of speech pauses based upon the estimated current noise value.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: April 6, 2010
    Assignee: Nokia Corporation
    Inventors: Philippe Gournay, Milan Jelinek, Steven C. Greer
  • Patent number: 7693710
    Abstract: The present invention relates to a method and device for improving concealment of frame erasure caused by frames of an encoded sound signal erased during transmission from an encoder (106) to a decoder (110), and for accelerating recovery of the decoder after non erased frames of the encoded sound signal have been received. For that purpose, concealment/recovery parameters are determined in the encoder or decoder. When determined in the encoder (106), the concealment/recovery parameters are transmitted to the decoder (110). In the decoder, erasure frame concealment and decoder recovery is conducted in response to the concealment/recovery parameters. The concealment/recovery parameters may be selected from the group consisting of: a signal classification parameter, an energy information parameter and a phase information parameter.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: April 6, 2010
    Assignee: VoiceAge Corporation
    Inventors: Milan Jelinek, Philippe Gournay
  • Publication number: 20100023323
    Abstract: A multi-reference quantization device and method for quantizing an input LPC filter, comprises a plurality of differential quantizers using respective, different references, and a selector of a reference amongst the different references of the differential quantizers using a reference selection criterion. The input LPC filter is differentially quantized by the differential quantizer using the selected reference. A device and method for inverse quantizing a multi-reference differentially quantized LPC filter extracted from a bitstream, comprises an extractor from the bitstream of information about a reference amongst a plurality of possible references used for quantizing the multi-reference differentially quantized LPC filter, and a differential inverse quantizer using the reference corresponding to the extracted reference information to inverse quantize the multi-reference differentially quantized LPC filter.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 28, 2010
    Applicant: VOICEAGE CORPORATION
    Inventors: Philippe Gournay, Bruno Bessette, Redwan Salami
  • Publication number: 20100023325
    Abstract: A device and a method for quantizing a LPC filter in the form of an input vector in a quantization domain, comprises a calculator of a first-stage approximation of the input vector, a subtractor of the first-stage approximation from the input vector to produce a residual vector, a calculator of a weighting function from the first-stage approximation, a warper of the residual vector with the weighting function, and a quantizer of the weighted residual vector to supply a quantized weighted residual vector.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 28, 2010
    Applicant: VOICEAGE CORPORATION
    Inventors: Bruno BESSETTE, Philippe Gournay, Redwan Salami
  • Publication number: 20100023324
    Abstract: A device and a method for quantizing, in a super-frame including a sequence of frames, LPC filters calculated during the frames of the sequence. The LPC filter quantizing device and method comprises: an absolute quantizer for first quantizing one of the LPC filters using absolute quantization; and at least one quantizer of the other LPC filters using a quantization mode selected from the group consisting of absolute quantization and differential quantization relative to at least one previously quantized filter amongst the LPC filters. For inverse quantizing, at least the first quantized LPC filter is received and an inverse quantizer inverse quantizes the first quantized LPC filter using absolute inverse quantization. If any quantized LPC filter other than the first quantized LPC filter is received, an inverse quantizer inverse quantizes this quantized LPC filter using one of absolute inverse quantization and differential inverse quantization relative to at least one previously received quantized LPC filter.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 28, 2010
    Applicant: VOICEAGE CORPORATION
    Inventors: Philippe Gournay, Bruno BESSETTE, Redwan Salami