Patents by Inventor Philippe Menteur

Philippe Menteur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9683759
    Abstract: A heat exchanger (5) includes a thermally conductive cylindrical container (40), at least one thermally conductive tube (30), a cooling column (90), and a cryogen coldhead (100). The cooling column and coldhead condense gaseous helium to liquid helium to maintain a reservoir of liquid helium in the thermally conductive cylindrical container (40). The at least one thermally conductive tube (30) coils circumferentially around the container (40), and extends to at least one superconducting magnet coil heat exchanger (20), and back. The tube forms a selected loop which holds gaseous helium at pressure up about 104 bar (1500 PSI) or room temperature to about 0.75 bar at cryogenic temperatures.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: June 20, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Robert Adolph Ackermann, Philippe Menteur, Manmohan Dhar
  • Patent number: 9074798
    Abstract: When cooling a superconducting magnet for use in a magnetic resonance imaging (MRI) device, a two-stage cryocooler (42) employs a first stage cooler (52) to cool a working gas (e.g., Helium, Hydrogen, etc.) to approximately 25 K. The working gas moves through a tubing system by convection until the magnet (20) is at approximately 25K. Once the magnet (20) reaches 25 K, gas flow stops, and a second stage cooler (54) cools the magnet (20) further, to about 4 K.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 7, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Robert A. Ackermann, Philippe A. Menteur
  • Publication number: 20140243205
    Abstract: A heat exchanger (5) includes a thermally conductive cylindrical container (40), at least one thermally conductive tube (30), a cooling column (90), and a cryogen coldhead (100). The cooling column and coldhead condense gaseous helium to liquid helium to maintain a reservoir of liquid helium in the thermally conductive cylindrical container (40). The at least one thermally conductive tube (30) coils circumferentially around the container (40), and extends to at least one superconducting magnet coil heat exchanger (20), and back. The tube forms a selected loop which holds gaseous helium at pressure up about 104 bar (1500 PSI) or room temperature to about 0.75 bar at cryogenic temperatures.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 28, 2014
    Inventors: Robert Adolph Ackermann, Philippe Menteur, Manmohan Dhar
  • Publication number: 20130023418
    Abstract: When cooling a superconducting magnet for use in a magnetic resonance imaging (MRI) device, a two-stage cryocooler (42) employs a first stage cooler (52) to cool a working gas (e.g., Helium, Hydrogen, etc.) to approximately 25 K. The working gas moves through a tubing system by convection until the magnet (20) is at approximately 25K. Once the magnet (20) reaches 25 K, gas flow stops, and a second stage cooler (54) cools the magnet (20) further, to about 4 K.
    Type: Application
    Filed: December 7, 2010
    Publication date: January 24, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Robert A. Ackermann, Philippe A. Menteur
  • Publication number: 20080209919
    Abstract: A system can include a heat transfer structure and a heat exchanger. The heat transfer structure is to cool an object, and the heat exchanger is to cool a portion of the heat transfer structure. The system can be cooled significantly faster than a conventional system that uses conductive cooling. The system has no or less liquid cryogen that would be vaporized as compared to a conventional system that immerses the object to be cooled within a bath of liquid cryogen or has a substantial mass of liquid cryogen within a cooling loop.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: PHILIPS MEDICAL SYSTEMS MR, INC.
    Inventors: Robert A. Ackermann, Philippe Menteur, Chandra T. Reis