Patents by Inventor Philippe Sekine

Philippe Sekine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854404
    Abstract: A system computes a timing interval between high-capacity vehicles (HCVs) for each of a plurality of HCV corridors within a geographic region, each respective HCV corridor of the plurality of HCV corridors including a start area. For each respective HCV corridor, the system transmits, via a network communication interface, (i) first data to a first computing device associated with a first HCV, the first data indicating the start area of the respective HCV corridor, and a first start time for the first HCV, and (ii) second data to a second computing device associated with a second HCV, the second data indicating the start area of the respective HCV corridor and a second start time for the second HCV, wherein the first start time for the first HCV and the second start time for the second HCV are based on the computed timing interval for the respective HCV corridor.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: December 26, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Kenneth Kuhn, Eoin O'Mahony, Miraj Ramhematpura, Mustafa Sahin, Lior Seeman, Philippe Sekine, Vishnu Srinivasan Sundaresan, Meisam Vosoughpour, Danhua Guo, Robert Paine
  • Publication number: 20230351274
    Abstract: A system can arrange a plurality of transport services in a geographic region by matching received transport requests from requesters with standard vehicles to facilitate transport of the requesters to destinations indicated in the transport requests. The transport requests can comprise both requests for standard vehicles and high-capacity vehicle (HCV) requests from HCV requesters. Based on a set of transport services for HCV requesters, from the plurality of transport services, the system can determine over a specified duration of time, a set of demand data for HCV transport services in the geographic region. The system can then execute a route design model using the set of demand data to generate an HCV route network for the geographic region.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Kristian Henrickson, Zijian Li, Kazumori Haruna, Aaron Chazhoor, Philippe Sekine, Ashwin Prabhu, Hoang Ly, David O'Neil
  • Patent number: 11482111
    Abstract: A computing system computes a timing interval between high-capacity vehicles (HCVs) for each HCV corridor within a geographic region to control rates of HCVs entering and exiting each of the HCV corridors. For each of the HCV corridors, the computing system schedules a first HCV to provide a transport service along the corridor beginning at a first starting time, transmits first schedule data for the corridor to the first HCV, schedules a second HCV to provide the transport service along the corridor beginning at a second starting time after the first starting time according to the timing interval for the corridor, and transmits second schedule data for the corridor to the second HCV.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: October 25, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Kenneth Kuhn, Eoin O'Mahony, Miraj Ramhematpura, Mustafa Sahin, Lior Seeman, Philippe Sekine, Vishnu Srinivasan Sundaresan, Meisam Vosoughpour, Danhua Guo, Robert Paine
  • Publication number: 20220335834
    Abstract: A system computes a timing interval between high-capacity vehicles (HCVs) for each of a plurality of HCV corridors within a geographic region, each respective HCV corridor of the plurality of HCV corridors including a start area. For each respective HCV corridor, the system transmits, via a network communication interface, (i) first data to a first computing device associated with a first HCV, the first data indicating the start area of the respective HCV corridor, and a first start time for the first HCV, and (ii) second data to a second computing device associated with a second HCV, the second data indicating the start area of the respective HCV corridor and a second start time for the second HCV, wherein the first start time for the first HCV and the second start time for the second HCV are based on the computed timing interval for the respective HCV corridor.
    Type: Application
    Filed: July 7, 2022
    Publication date: October 20, 2022
    Inventors: Kenneth Kuhn, Eoin O'Mahony, Miraj Ramhematpura, Mustafa Sahin, Lior Seeman, Philippe Sekine, Vishnu Srinivasan Sundaresan, Meisam Vosoughpour, Danhua Guo, Robert Paine
  • Publication number: 20210020047
    Abstract: A computing system computes a timing interval between high-capacity vehicles (HCVs) for each HCV corridor within a geographic region to control rates of HCVs entering and exiting each of the HCV corridors. For each of the HCV corridors, the computing system schedules a first HCV to provide a transport service along the corridor beginning at a first starting time, transmits first schedule data for the corridor to the first HCV, schedules a second HCV to provide the transport service along the corridor beginning at a second starting time after the first starting time according to the timing interval for the corridor, and transmits second schedule data for the corridor to the second HCV.
    Type: Application
    Filed: August 8, 2019
    Publication date: January 21, 2021
    Inventors: Kenneth Kuhn, Eoin O'Mahony, Miraj Ramhematpura, Mustafa Sahin, Lior Seeman, Philippe Sekine, Vishnu Srinivasan Sundaresan, Meisam Vosoughpour, Danhua Guo, Robert Paine
  • Publication number: 20200393256
    Abstract: A computing system can detect high capacity vehicles (HCVs) coming online to provide transport services. The computing system monitors transport demand for HCV corridors throughout a geographic region. Each HCV corridor comprises a plurality of possible rendezvous locations and a plurality of possible routes that can be traveled by individual HCVs through the HCV corridor, as opposed to having fixed routes with fixed stops. The computing system can determine a schedule for each HCV corridor, and monitor supply flow of HCVs traveling through each HCV corridor. Based on (i) the transport demand, (ii) the schedule, and (iii) the supply flow of the HCVs for each of the HCV corridors, the computing system can match the HCV with a specified HCV corridor, and transmit match data indicating a start zone of the matching HCV corridor to the computing device of the HCV.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Mustafa Sahin, Vishnu Sundaresan, Meisam Vosoughpour, Kenneth Kuhn, Miraj Rahematpura, Danhua Guo, Eoin O'Mahony, Lior Seeman, Denny Tse-Wei Tsai, Philippe Sekine
  • Publication number: 20200356911
    Abstract: A computing system can assign a transport request to a high capacity vehicle (HCV) corridor of a plurality of HCV corridors, where the HCV corridor is associated with a plurality of possible rendezvous locations and a plurality of possible routes that can be traveled by individual HCVs. The computing system can determine, from the transport request of the requesting user, an optimal pick-up location from the plurality of possible rendezvous locations of the HCV corridor for an HCV to rendezvous with the requesting user.
    Type: Application
    Filed: May 8, 2019
    Publication date: November 12, 2020
    Inventors: Mustafa Sahin, Vishnu Sundaresan, Meisam Vosoughpour, Kenneth Kuhn, Miraj Rahematpura, Li Li, Yang Zhao, Danhua Guo, Eoin O'Mahony, Lior Seeman, Jasim Mohammed, Denny Tse-Wei Tsai, Philippe Sekine