Patents by Inventor Philippe Stauffenegger

Philippe Stauffenegger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10228430
    Abstract: A method for the transmission/reception of RF signals for NMR measurements uses a heat exchanger (1) for cooling heat sources (5), the heat exchanger having a contact element (4.2) for thermal connection between a cryogenic fluid and the heat source, is characterized in that the heat exchanger comprises a container having an interior volume VB into which a first cryogenic fluid F1 that has a liquid component F1L and a gaseous component F1G flows through an inflow conduit (8) and from which a second cryogenic fluid F2 that has liquid component F2L and a gaseous component F2G flows out through an outflow conduit (9). The inflow conduit has a flow cross-section QZ and a circumference UZ from which an associated parameter VZ=4·Q2Z/UZ results, wherein VB>10·VZ, and the outflow conduit has a flow diameter QA wherein QA?QZ. The contact element is in close thermal contact with both the liquid volume component VL of the cryogenic fluid and with the heat source.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: March 12, 2019
    Assignee: Bruker BioSpin AG
    Inventors: Marc A. Schnell, Marc Enrique Paredes, Cengiz Cetrefli, Philippe Stauffenegger, Daniel Marek
  • Patent number: 8975896
    Abstract: An NMR (nuclear magnetic resonance) apparatus has a magnet system disposed in a cryostat (1), the cryostat having at least one nitrogen tank (3b) for receiving liquid nitrogen (5b) and a room temperature bore (7) for receiving an NMR probehead (8), wherein part(s) of the probehead or the overall probehead can be cooled to cryogenic temperatures by supplying liquid nitrogen (5b) via a supply line (14). The nitrogen tank (3b) of the cryostat (1) is connected to the NMR probehead (8) by means of a supply line (14) in such a fashion that liquid nitrogen (5b) is removed from the nitrogen tank (3b) and guided to the NMR probehead (8). The overall apparatus is therefore more compact, the operating comfort of the apparatus is increased, and the costs for acquisition, operation and maintenance are considerably reduced compared to previous comparable devices.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: March 10, 2015
    Assignee: Bruker BioSpin AG
    Inventors: Oskar Schett, Daniel Guy Baumann, Marc Schnell, Cengiz Cetrefli, Daniel Marek, Klemens Kessler, Philippe Stauffenegger
  • Patent number: 8896312
    Abstract: An NMR measuring system with an NMR probehead has at least one cooling device (5a, b) generating a vibration spectrum of individual selective frequencies. The cooling device is mechanically connected to a vibration absorber (9a, 9b) having an oscillating mass element (27), whose resonance frequency is adjusted to the vibration frequency of the cooling device and/or to one of its harmonics. The cooling device has a cooling head which is thermally connected to an NMR resonator of the probehead via a flexible mechanical element. A vacuum housing of the probehead is designed in two parts which are mechanically connected via at least one damping element (30a-d). The lower part and the upper part of the vacuum housing are additionally mechanically flexibly connected to each other in a vacuum-tight fashion via a corrugated bellows (8a, 8b). The system minimizes sidebands in NMR spectra.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 25, 2014
    Assignee: Bruker BioSpin AG
    Inventors: Philippe Stauffenegger, Klemens Kessler, Marco Tomaselli, Sven Radke, Bernhard Felber
  • Publication number: 20140283530
    Abstract: A method for the transmission/reception of RF signals for NMR measurements uses a heat exchanger (1) for cooling heat sources (5), the heat exchanger having a contact element (4.2) for thermal connection between a cryogenic fluid and the heat source, is characterized in that the heat exchanger comprises a container having an interior volume VB into which a first cryogenic fluid F1 that has a liquid component F1L and a gaseous component F1G flows through an inflow conduit (8) and from which a second cryogenic fluid F2 that has liquid component F2L and a gaseous component F2G flows out through an outflow conduit (9). The inflow conduit has a flow cross-section QZ and a circumference UZ from which an associated parameter VZ=4·Q2Z/UZ results, wherein VB>10·VZ, and the outflow conduit has a flow diameter QA wherein QA?QZ. The contact element is in close thermal contact with both the liquid volume component VL of the cryogenic fluid and with the heat source.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: Marc A. Schnell, Marc Enrique Paredes, Cengiz Cetrefli, Philippe Stauffenegger, Daniel Marek
  • Publication number: 20120242335
    Abstract: An NMR (nuclear magnetic resonance) apparatus has a magnet system disposed in a cryostat (1), the cryostat having at least one nitrogen tank (3b) for receiving liquid nitrogen (5b) and a room temperature bore (7) for receiving an NMR probehead (8), wherein part(s) of the probehead or the overall probehead can be cooled to cryogenic temperatures by supplying liquid nitrogen (5b) via a supply line (14). The nitrogen tank (3b) of the cryostat (1) is connected to the NMR probehead (8) by means of a supply line (14) in such a fashion that liquid nitrogen (5b) is removed from the nitrogen tank (3b) and guided to the NMR probehead (8). The overall apparatus is therefore more compact, the operating comfort of the apparatus is increased, and the costs for acquisition, operation and maintenance are considerably reduced compared to previous comparable devices.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 27, 2012
    Inventors: Oskar Schett, Daniel Guy Baumann, Marc Schnell, Cengiz Cetrefli, Daniel Marek, Klemens Kessler, Philippe Stauffenegger
  • Publication number: 20120242336
    Abstract: An NMR measuring system with an NMR probehead has at least one cooling device (5a, b) generating a vibration spectrum of individual selective frequencies. The cooling device is mechanically connected to a vibration absorber (9a, 9b) having an oscillating mass element (27), whose resonance frequency is adjusted to the vibration frequency of the cooling device and/or to one of its harmonics. The cooling device has a cooling head which is thermally connected to an NMR resonator of the probehead via a flexible mechanical element. A vacuum housing of the probehead is designed in two parts which are mechanically connected via at least one damping element (30a-d). The lower part and the upper part of the vacuum housing are additionally mechanically flexibly connected to each other in a vacuum-tight fashion via a corrugated bellows (8a, 8b). The system minimizes sidebands in NMR spectra.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 27, 2012
    Inventors: Philippe Stauffenegger, Klemens Kessler, Marco Tomaselli, Sven Radke, Bernhard Felber
  • Patent number: 8153084
    Abstract: A sample tube for an NMR probe head, which extends along a z axis and has an internal cavity that extends in an axial direction of the z axis, is open to the outside at the axially upper end, is closed at the axially lower end and contains a liquid NMR sample substance during operation, wherein the cross-sectional surface of this cavity extending perpendicularly to the z axis and parallel to the xy coordinate plane has an elongated shape in the direction of the x axis with maximum dimensions a in the y direction and b in the x direction, wherein a<b, is characterized in that the cross-sectional surface of the sample tube, which extends perpendicularly to the z axis and is parallel to the xy coordinate plane has a circular outer shape. Sample tubes of this type provide a particularly large signal-to-noise ratio, can be easily inserted into a conventional cryogenic probe head and be axially and radially positioned therein by existing precision centering devices.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: April 10, 2012
    Assignee: Bruker BioSpin AG
    Inventors: Philippe Stauffenegger, Oskar Schett
  • Publication number: 20110100027
    Abstract: A cryo probe head for the transmission/reception of RF signals for NMR measurements with a heat exchanger (1) for cooling heat sources (5), the heat exchanger having a contact element (4.2) for thermal connection between a cryogenic fluid and the heat source, is characterized in that the heat exchanger comprises a container having an interior volume VB into which a first cryogenic fluid F1 that has a liquid component F1L and a gaseous component F1G flows through an inflow conduit (8) and from which a second cryogenic fluid F2 that has liquid component F2L and a gaseous component F2G flows out through an outflow conduit (9). The inflow conduit has a flow cross-section QZ and a circumference UZ from which a characteristic conduit volume VZ=4·Q2Z/UZ results, wherein VB>10·VZ, and the outflow conduit has a flow diameter QA wherein QA?QZ. The contact element is in close thermal contact with both the liquid volume component VL of the cryogenic fluid and with the heat source.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 5, 2011
    Inventors: Marc A. Schnell, Marc Enrique Paredes, Cengiz Cetrefli, Philippe Stauffenegger, Daniel Marek
  • Publication number: 20070128086
    Abstract: A sample tube for an NMR probe head, which extends along a z axis and has an internal cavity that extends in an axial direction of the z axis, is open to the outside at the axially upper end, is closed at the axially lower end and contains a liquid NMR sample substance during operation, wherein the cross-sectional surface of this cavity extending perpendicularly to the z axis and parallel to the xy coordinate plane has an elongated shape in the direction of the x axis with maximum dimensions a in the y direction and b in the x direction, wherein a<b, is characterized in that the cross-sectional surface of the sample tube, which extends perpendicularly to the z axis and is parallel to the xy coordinate plane has a circular outer shape. Sample tubes of this type provide a particularly large signal-to-noise ratio, can be easily inserted into a conventional cryogenic probe head and be axially and radially positioned therein by existing precision centering devices.
    Type: Application
    Filed: November 24, 2006
    Publication date: June 7, 2007
    Applicant: Bruker BioSpin AG
    Inventors: Philippe Stauffenegger, Oskar Schett