Patents by Inventor Phillip A. Sharp
Phillip A. Sharp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9012621Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: January 18, 2011Date of Patent: April 21, 2015Assignees: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V., Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, University of MassachusettsInventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Patent number: 8957197Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: January 18, 2011Date of Patent: February 17, 2015Assignees: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V., Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, University of MassachusettsInventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Patent number: 8790922Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: July 29, 2014Assignees: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V., Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, University of MassachusettsInventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Patent number: 8742092Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: June 3, 2014Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.Inventors: Thomas Tuschl, Phillip A. Sharp, Phillip D. Zamore, David P. Bartel
-
Patent number: 8632997Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: January 21, 2014Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Patent number: 8552171Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: October 8, 2013Assignees: University of Massachusetts, Whitehead Insititute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Föderung der Wissenschaften E.V.Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20130156776Abstract: The invention provides methods for treating or decreasing the likelihood of developing a stress-granule related disorder and/or cancer by administering one or more poly-ADP-ribose polymerase (PARP) inhibitors, one or more PARP activators, one or more poly-ADP-ribose glycosylase (PARG) activators, and/or one or more poly-ADP-ribose glycohydrolase ARH3 activators. The invention also provides corresponding methods of decreasing stress granule formation and/or proliferation in a cell or a population of cells. The invention further provides methods of increasing the number of stress granules and proliferation in a cell or a population of cells by administering one or more PARP activators, one or more PARP inhibitors, one or more PARG inhibitors, and/or one or more ARH3 inhibitors.Type: ApplicationFiled: March 30, 2012Publication date: June 20, 2013Applicant: Massachusetts Institute of TechnologyInventors: Paul Chang, Sejal . Vyas, Anthony Leung, Phillip A. Sharp
-
Patent number: 8435961Abstract: The invention provides methods for increasing the activity of an inhibitory RNA (RNAi) in a subject requiring administering one or more poly-ADP-ribose polymerase (PARP) inhibitors and/or one or more PARG activators to the subject. The invention also provides methods for increasing the activity of an inhibitory RNA in a cell or cell population requiring contacting a cell or cell population with one or more PARP inhibitors and/or one or more PARG activators. The invention further provides compositions and kits containing one or more PARP inhibitors and/or one or more PARG activators.Type: GrantFiled: June 23, 2010Date of Patent: May 7, 2013Assignee: Massachusetts Institute of TechnologyInventors: Paul Chang, Anthony Leung, Phillip A. Sharp
-
Patent number: 8420391Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: April 16, 2013Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Patent number: 8394628Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: GrantFiled: October 4, 2010Date of Patent: March 12, 2013Assignees: University of Massachusetts, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20120122111Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: March 9, 2011Publication date: May 17, 2012Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20120029061Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: February 2, 2012Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20120015042Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: January 18, 2011Publication date: January 19, 2012Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110289611Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: November 24, 2011Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110281931Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: November 17, 2011Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110244568Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: October 6, 2011Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110244446Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: October 6, 2011Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110245318Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.Type: ApplicationFiled: October 4, 2010Publication date: October 6, 2011Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
-
Publication number: 20110097329Abstract: The invention provides methods for treating or decreasing the likelihood of developing a stress-granule related disorder and/or cancer by administering one or more poly-ADP-ribose polymerase (PARP) inhibitors, one or more PARP activators, one or more poly-ADP-ribose glycosylase (PARG) activators, and/or one or more poly-ADP-ribose glycohydrolase ARH3 activators. The invention also provides corresponding methods of decreasing stress granule formation and/or proliferation in a cell or a population of cells. The invention further provides methods of increasing the number of stress granules and proliferation in a cell or a population of cells by administering one or more PARP activators, one or more PARP inhibitors, one or more PARG inhibitors, and/or one or more ARH3 inhibitors.Type: ApplicationFiled: June 24, 2010Publication date: April 28, 2011Applicant: Massachusetts Institute of TechnologyInventors: Paul Chang, Sejal Vyas, Anthony Leung, Phillip A. Sharp
-
Publication number: 20110097328Abstract: The invention provides methods for increasing the activity of an inhibitory RNA (RNAi) in a subject requiring administering one or more poly-ADP-ribose polymerase (PARP) inhibitors and/or one or more PARG activators to the subject. The invention also provides methods for increasing the activity of an inhibitory RNA in a cell or cell population requiring contacting a cell or cell population with one or more PARP inhibitors and/or one or more PARG activators. The invention further provides compositions and kits containing one or more PARP inhibitors and/or one or more PARG activators.Type: ApplicationFiled: June 23, 2010Publication date: April 28, 2011Applicant: Massachusetts Institute of TechnologyInventors: Paul Chang, Anthony Leung, Phillip A. Sharp