Patents by Inventor Phillip Belgrader

Phillip Belgrader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200056192
    Abstract: The present disclosure provides methods, automated modules, and instruments for enrichment of live cells that have been edited by nucleic acid-guided nuclease genome editing. The disclosure provides improved methods and modules—including high throughput methods and modules—for enriching for cells that have been subjected to editing.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 20, 2020
    Inventors: Eileen Spindler, Amy Hiddessen, Phillip Belgrader, Charles Johnson, Clint Davis
  • Publication number: 20200056139
    Abstract: The present disclosure provides automated modules and instruments for improved detection of nuclease genome editing of live cells. The disclosure provides improved modules—including high throughput modules—for screening cells that have been subjected to editing and identifying and selecting cells that have been properly edited.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 20, 2020
    Inventors: Andrew Garst, Michael Graige, Richard Fox, Eileen Spindler, Amy Hiddessen, Phillip Belgrader, Don Masquelier, Bruce Chabansky
  • Patent number: 10557150
    Abstract: In an illustrative embodiment, automated instruments comprising one or more flow-through electroporation devices or modules are provided to automate transformation of nucleic acids in live cells.
    Type: Grant
    Filed: September 14, 2019
    Date of Patent: February 11, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Don Masquelier, Phillip Belgrader
  • Publication number: 20200038874
    Abstract: The present disclosure provides a reagent cartridge configured for use in an automated multi-module cell processing environment.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Inventors: Don Masquelier, Phillip Belgrader, Brian Van Hatten, Jorge Bernate, Bruce Chabansky
  • Patent number: 10550363
    Abstract: The present disclosure provides instruments, modules and methods for improved detection of edited cells following nucleic acid-guided nuclease genome editing. The disclosure provides improved automated instruments that perform methods—including high throughput methods—for screening cells that have been subjected to editing and identifying cells that have been properly edited.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 4, 2020
    Assignee: Inscripta, Inc.
    Inventors: Andrew Garst, Richard Fox, Phillip Belgrader, Don Masquelier
  • Patent number: 10533152
    Abstract: The present disclosure provides instruments, modules and methods for improved detection of edited cells following nucleic acid-guided nuclease genome editing. The disclosure provides improved automated instruments that perform methods—including high throughput methods—for screening cells that have been subjected to editing and identifying cells that have been properly edited.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 14, 2020
    Assignee: Inscripta, Inc.
    Inventors: Phillip Belgrader, Don Masquelier, Bruce Chabansky, Jorge Bernate, Andrew Garst, Richard Fox
  • Patent number: 10532324
    Abstract: The present disclosure provides instruments, modules and methods for improved detection of edited cells following nucleic acid-guided nuclease genome editing. The disclosure provides improved automated instruments that perform methods—including high throughput methods—for screening cells that have been subjected to editing and identifying cells that have been properly edited.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: January 14, 2020
    Assignee: Inscripta, Inc.
    Inventors: Don Masquelier, Phillip Belgrader, Andrew Garst, Richard Fox, Matthew Estes, Bruce Chabansky
  • Patent number: 10532352
    Abstract: An integrated sample analysis system is disclosed. The sample analysis system contains (1) a sample preparation/analysis module having sample purification device comprising a monolith that binds specifically to nucleic acids and a sample analysis device comprising a microarray enclosed in a reaction chamber having a hydrophilic interior surface; (2) a temperature control module comprising a thermocycler having a thermally conductive temperature-control bladder; and (3) an imaging device capable of capturing an image of the microarray in the reaction chamber.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: January 14, 2020
    Assignee: Akonni Biosystems, Inc.
    Inventors: Christopher G. Cooney, Phillip Belgrader, Arial Bueno, Steve Garber, Nitu Harshendu Thakore, Peter Qiang Qu
  • Publication number: 20200002764
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: June 17, 2019
    Publication date: January 2, 2020
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Publication number: 20200002763
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: June 12, 2019
    Publication date: January 2, 2020
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo, Stephane Claude Boutet, Sarah Taylor, Niranjan Srinivas
  • Patent number: 10519437
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments are provided to automate multiple edits into nucleic acid sequences inside one or more cells.
    Type: Grant
    Filed: September 14, 2019
    Date of Patent: December 31, 2019
    Assignee: Inscripta, Inc.
    Inventors: Don Masquelier, Phillip Belgrader, Jorge Bernate, Ryan Gill, Kevin Ness
  • Publication number: 20190382707
    Abstract: The present disclosure relates to methods for control of cell growth rates where cell growth is measured in situ. The methods are applicable to bacterial cells, mammalian cells, non-mammalian eukaryotic cells, plant cells, yeast cells, fungi, and archea.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Inventors: Don Masquelier, Phillip Belgrader
  • Publication number: 20190382795
    Abstract: In an illustrative embodiment, automated instruments comprising one or more flow-through electroporation devices or modules are provided to automate transformation of nucleic acids in live cells.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 19, 2019
    Inventors: Jorge Bernate, Don Masquelier, Phillip Belgrader
  • Patent number: 10508288
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments comprising one or more flow-through electroporation devices or modules are provided to automate genome editing in live cells.
    Type: Grant
    Filed: September 14, 2019
    Date of Patent: December 17, 2019
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Don Masquelier, Phillip Belgrader, Kevin Ness
  • Publication number: 20190351421
    Abstract: The present disclosure provides a reagent cartridge configured for use in an automated multi-module cell processing environment.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Don Masquelier, Phillip Belgrader, Brian Van Hatten, Jorge Bernate, Bruce Chabansky
  • Patent number: 10478822
    Abstract: The present disclosure provides a reagent cartridge configured for use in an automated multi-module cell processing environment.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: November 19, 2019
    Assignee: Inscripta, Inc.
    Inventors: Don Masquelier, Phillip Belgrader, Brian Van Hatten, Jorge Bernate, Bruce Chabansky
  • Publication number: 20190338353
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization. Such polynucleotide processing may be useful for a variety of applications, including analyte characterization by polynucleotide sequencing. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, and RNA (e.g., mRNA or CRISPR guide RNAs). Also described herein, are barcoded labelling agents and oligonucleotide molecules useful for “tagging” analytes for characterization.
    Type: Application
    Filed: May 30, 2019
    Publication date: November 7, 2019
    Inventors: Phillip Belgrader, Zachary Bent, Rajiv Bharadwaj, Vijay Kumar Sreenivasa Gopalan, Josephine Harada, Christopher Hindson, Mohammad Rahimi Lenji, Michael Ybarra Lucero, Geoffrey McDermott, Elliott Meer, Tarjei Sigurd Mikkelsen, Christopher Joachim O'Keeffe, Katherine Pfeiffer, Andrew D. Price, Paul Ryvkin, Serge Saxonov, John R. Stuelpnagel, Jessica Michele Terry, Tobias Daniel Wheeler, Indira Wu, Solongo Batjargal Ziraldo
  • Patent number: 10465185
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments are provided to automate multiple edits into nucleic acid sequences inside one or more cells.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: November 5, 2019
    Assignee: Inscripta, Inc.
    Inventors: Don Masquelier, Phillip Belgrader, Jorge Bernate, Ryan Gill, Kevin Ness
  • Publication number: 20190316120
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments are provided to automate multiple edits into nucleic acid sequences inside one or more cells.
    Type: Application
    Filed: May 28, 2019
    Publication date: October 17, 2019
    Inventors: Don Masquelier, Phillip Belgrader, Jorge Bernate, Ryan Gill, Kevin Ness
  • Patent number: 10443031
    Abstract: The present disclosure relates to methods for control of cell growth rates where cell growth is measured in situ. The methods are applicable to bacterial cells, mammalian cells, non-mammalian eukaryotic cells, plant cells, yeast cells, fungi, and archea.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 15, 2019
    Assignee: Inscripta, Inc.
    Inventors: Don Masquelier, Phillip Belgrader