Patents by Inventor Phillip Dowson

Phillip Dowson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7407715
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 5, 2008
    Assignee: Elliott Company
    Inventors: Kent W. Beedon, Phillip Dowson
  • Publication number: 20050211751
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Application
    Filed: May 26, 2005
    Publication date: September 29, 2005
    Applicant: Elliott Turbomachinery Co., Inc.
    Inventors: Kent Beedon, Phillip Dowson
  • Patent number: 6935555
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 30, 2005
    Assignee: Elliott Turbomachinery Co., Inc.
    Inventors: Kent W. Beedon, Phillip Dowson
  • Patent number: 6712912
    Abstract: A weld filler metal alloy composition and a method for welding stainless steel components into a final assembly includes the steps of: austenitizing the stainless steel components to be welded at a temperature of 1800° F.-2000° F.; applying, using conventional arc welding techniques a solid wire of the filler metal alloy comprising in % by weight: up to 0.02% carbon; up to 0.8% manganese; up to 0.02% phosphorus; up to 0.015% sulfur; up to 0.6% silicon; 4.5-5.5% nickel; 0.4-0.7% molybdenum; 10-12.5% chromium; up to 0.1% copper; balance essentially iron and incidental impurities; and tempering the welded assembly welded at a temperature of 930° F.-1300° F. A second tempering step conducted at a temperature of 1095° F.-1145° F. may follow. The welding method can be used to make compressor impellers (6). The compressor impeller components comprise 13Cr-4Ni stainless steel.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: March 30, 2004
    Assignee: Elliott Turbomachinery Co., Inc.
    Inventors: Douglas K. Richards, Phillip Dowson
  • Patent number: 6663739
    Abstract: The present invention provides a method of forming an abradable seal between rotating and non-rotating components of a machine. A sheet of abradable material is formed and then cut to a desired shape to form an abradable sheet piece. An adhesive composition is applied to at least a portion of a substrate surface and the sheet piece is contacted with the adhesive composition to adhesively bond the sheet piece to the substrate to form the abradable seal. An abradable seal is also provided having an adhesive composition deposited over at least a portion of a substrate surface with an abradable sheet piece bonded to the substrate by the adhesive composition.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: December 16, 2003
    Assignee: Elliott Turbomachinery Co., Inc.
    Inventors: Michael S. Walker, Phillip Dowson
  • Publication number: 20030056862
    Abstract: A weld filler metal alloy composition and a method for welding stainless steel components into a final assembly includes the steps of: austenitizing the stainless steel components to be welded at a temperature of 1800° F.-2000° F.; applying, using conventional arc welding techniques a solid wire of the filler metal alloy comprising in % by weight: up to 0.02% carbon; up to 0.8% manganese; up to 0.02% phosphorus; up to 0.015% sulfur; up to 0.6% silicon; 4.5-5.5% nickel; 0.4-0.7% molybdenum; 10-12.5% chromium; up to 0.1% copper; balance essentially iron and incidental impurities; and tempering the welded assembly welded at a temperature of 930° F.-1300° F. A second tempering step conducted at a temperature of 1095° F.-1145° F. may follow. The welding method can be used to make compressor impellers (6). The compressor impeller components comprise 13Cr-4Ni stainless steel.
    Type: Application
    Filed: October 23, 2002
    Publication date: March 27, 2003
    Inventors: Douglas K. Richards, Phillip Dowson
  • Publication number: 20030057263
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Application
    Filed: October 23, 2002
    Publication date: March 27, 2003
    Inventors: Kent W. Beedon, Phillip Dowson
  • Publication number: 20020017361
    Abstract: The present invention provides a method of forming an abradable seal between rotating and non-rotating components of a machine. A sheet of abradable material is formed and then cut to a desired shape to form an abradable sheet piece. An adhesive composition is applied to at least a portion of a substrate surface and the sheet piece is contacted with the adhesive composition to adhesively bond the sheet piece to the substrate to form the abradable seal. An abradable seal is also provided having an adhesive composition deposited over at least a portion of a substrate surface with an abradable sheet piece bonded to the substrate by the adhesive composition.
    Type: Application
    Filed: September 17, 2001
    Publication date: February 14, 2002
    Inventors: Michael S. Walker, Phillip Dowson