Patents by Inventor Phillip Falkner

Phillip Falkner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090264741
    Abstract: An volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Mustafa Karamanoglu, Pooja Mehta, Ioana Fleming, David A. Scanlon, Michael Kryger, Sean Campbell-Massa, Chad Giese, Steven L. Waldhauser, Shangqian Peter Zhang, Jeff Jannicke, Phillip Falkner, Don Hefner, Eduardo N. Warman, James Steeves, Rogier Receveur, Koen Michels, Olaf Eick, Vincent Larik
  • Publication number: 20090264727
    Abstract: An volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Sean Campbell-Massa, Phillip Falkner, Ioana Fleming, Chad Giese, Mustafa Karamanoglu, Michael Kryger, Karl Evan Nowak, Pooja Mehta, James Steeves, Lane A. Phillips, Shangqian Peter Zhang, Steven L. Waldhauser, David A. Scanlon, Brian Houston Craig, Eduardo N. Warman, Koen Michels, Marie P. Smith, Noelle Christine Hurtig, Olaf Eick, Rogier Receveur, Vincent Larik, Brent Chelgren, Victoria Interrante
  • Publication number: 20090264777
    Abstract: An volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Mustafa Karamanoglu, Pooja Mehta, Loana Fleming, David A. Scanlon, Michael Kryger, Sean Campbell-Massa, Chad Glese, Steven L. Waldhauser, Shangqian Peter Zhang, Jeff Jannicke, Phillip Falkner, Don Hefner, Eduardo N. Warman, James Steeves, Rogier Receveur, Koen Michels, Olaf Eick, Vincent Larik
  • Publication number: 20090262979
    Abstract: An volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Mustafa Karamanoglu, Pooja Mehta, Ioana Fleming, David A. Scanion, Michael Kryger, Sean Campbell-Massa, Chad Glese, Steven L. Waldhauser, Shangqian Peter Zhang, Jeff Jannicke, Phillip Falkner, Don Hefner, Eduardo N. Warman, James Steeves, Rogier Receveur, Koen Michels, Olaf Eick, Vincent Larik
  • Publication number: 20090264745
    Abstract: An volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Mustafa Karamanoglu, Pooja Mehta, Iona Fleming, David A. Scanlon, Michael Kryger, Sean Campbell-Massa, Chad Giese, Steven L. Waldhauser, Shangqian Peter Zhang, Jeff Jannicke, Phillip Falkner, Don Hefner, Eduardo N. Warman, James Steeves, Rogier Receveur, Koen Michels, Olaf Eick, Vincent Larik
  • Publication number: 20090264746
    Abstract: A volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Sean Campbell-Massa, Phillip Falkner, Ioana Fleming, Chad Giese, Mustafa Karamanoglu, Michael Kryger, Karl Evan Nowak, Pooja Mehta, James Steeves, Lane A. Phillips, Shangqian Peter Zhang, Steven L. Waldhauser, David Scanlon, Brian Houston Craig, Eduardo N. Warman, Koen Michels, Marie P. Smith, Noelle Christine Hurtig, Olaf Eick, Rogier Receveur, Vincent Larik, Brent Chelgren, Victoria Interrante
  • Publication number: 20090264747
    Abstract: A volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Sean Campbell-Massa, Phillip Falkner, Ioana Fleming, Chad Giese, Mustafa Karamanoglu, Michael Kryger, Karl Evan Nowak, Pooja Mehta, James Steevens, Lane A. Phillips, Shangqian Peter Zhang, Steven L. Waldhauser, David Scanlon, Brian Houston Craig, Eduardo N. Warman, Marie P. Smith, Noelle Christine Hurtig, Olaf Eick, Rogier Receveur, Vincent Larik, Brent Chelgren, Victoria Interrante
  • Publication number: 20090262109
    Abstract: A volume of a patient can be mapped with a system operable to identify a plurality of locations and save a plurality of locations of a mapping instrument. The mapping instrument can include one or more electrodes that can sense a voltage that can be correlated to a three dimensional location of the electrode at the time of the sensing or measurement. Therefore, a map of a volume can be determined based upon the sensing of the plurality of points without the use of other imaging devices. An implantable medical device can then be navigated relative to the mapping data.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 22, 2009
    Inventors: H. Toby Markowitz, Sean Campbell-Massa, Phillip Falkner, Ioana Fleming, Chad Giese, Mustafa Karamanoglu, Michael Kryger, Karl Evan Nowak, Pooja Mehta, James Steeves, Lane A. Phillips, Shangqian Peter Zhang, Steven L. Waldhauser, David A. Scanlon, Brian Houston Craig, Eduardo N. Warman, Koen Michels, Marie P. Smith, Noelle Christine Hurtig, Olaf Eick, Rogier Receveur, Vincent Larik, Brent Chelgren, Victoria Interrante
  • Publication number: 20090093857
    Abstract: An IMD can be implanted into a patient to address various conditions. The IMD case and leads can have various electrodes and other portions to measure various physiological conditions. For example, a selected current can be generated between two electrodes, either external or internal in the patient, and a voltage can be measured by one or more electrodes of the IMD. A voltage can be measured at two or more locations to determine a relative motion of different electrodes. If the electrodes are in different portions of the heart, a determination can be made of a relative motion or position of the heart or portions of the heart.
    Type: Application
    Filed: July 31, 2008
    Publication date: April 9, 2009
    Inventors: H. Toby Markowitz, Phillip Falkner, Douglas A. Hettrick, Sameh Sowelam
  • Publication number: 20070073370
    Abstract: A pressure sensor, in one embodiment, is passed through the atrial septal wall. A plurality of anchors is disposed on each side of the septal wall and secures the position of the pressure sensor. An inflatable deployment balloon is used to actuate the anchors.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 29, 2007
    Inventors: Todd Zielinski, Douglas Hettrick, Phillip Falkner, Kevin Seifert, Vicki Bjorklund, Mark Schneider
  • Publication number: 20070073351
    Abstract: A pressure sensor, in one embodiment, is passed through the atrial septal wall. A plurality of anchors is disposed on each side of the septal wall and secure the position of the pressure sensor.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 29, 2007
    Inventors: Todd Zielinski, Douglas Hettrick, Phillip Falkner, Kevin Seifert, Vicki Bjorklund, Mark Schneider
  • Publication number: 20060020271
    Abstract: Some embodiments of the invention provide a system for occluding a left atrial appendage of a patient. Some embodiments of the system can include a ring occluder that can be positioned around the left atrial appendage and a ring applicator to position the ring occluder with respect to the left atrial appendage. One embodiment discloses a method of accessing endocardial surfaces of the heart through the atrial appendage. Additional embodiments of the invention provide a clip occluder that can be positioned around the left atrial appendage. A clip applicator can position the clip occluder with respect to the left atrial appendage.
    Type: Application
    Filed: June 17, 2005
    Publication date: January 26, 2006
    Inventors: Mark Stewart, Alison Lutterman, David Francischelli, Leonard Leuer, Daniel Haeg, Marie Steinbrink, Roderick Briscoe, Tom Daigle, Eduardo Warman, Paul Rothstein, Phillip Falkner, Douglas Hettrick, David Kim, Steven Christian