Patents by Inventor Phillip G. Mather

Phillip G. Mather has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11733317
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: August 22, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal Engel, Phillip G. Mather
  • Publication number: 20230243898
    Abstract: Various means for improvement in signal-to-noise ratio (SNR) for a magnetic field sensor are disclosed for low power and high resolution magnetic sensing. The improvements may be done by reducing parasitic effects, increasing sense element packing density, interleaving a Z-axis layout to reduce a subtractive effect, and optimizing an alignment between a Z-axis sense element and a flux guide, etc.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. MATHER, Anuraag MOHAN
  • Patent number: 11656300
    Abstract: Various means for improvement in signal-to-noise ratio (SNR) for a magnetic field sensor are disclosed for low power and high resolution magnetic sensing. The improvements may be done by reducing parasitic effects, increasing sense element packing density, interleaving a Z-axis layout to reduce a subtractive effect, and optimizing an alignment between a Z-axis sense element and a flux guide, etc.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 23, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. Mather, Anuraag Mohan
  • Publication number: 20220260651
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal ENGEL, Phillip G. MATHER
  • Patent number: 11353520
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: June 7, 2022
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal Engel, Phillip G. Mather
  • Publication number: 20210199729
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 1, 2021
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal ENGEL, Phillip G. MATHER
  • Patent number: 10928463
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: February 23, 2021
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal Engel, Phillip G. Mather
  • Publication number: 20200408858
    Abstract: Various means for improvement in signal-to-noise ratio (SNR) for a magnetic field sensor are disclosed for low power and high resolution magnetic sensing. The improvements may be done by reducing parasitic effects, increasing sense element packing density, interleaving a Z-axis layout to reduce a subtractive effect, and optimizing an alignment between a Z-axis sense element and a flux guide, etc.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. MATHER, Anuraag MOHAN
  • Patent number: 10809320
    Abstract: Various means for improvement in signal-to-noise ratio (SNR) for a magnetic field sensor are disclosed for low power and high resolution magnetic sensing. The improvements may be done by reducing parasitic effects, increasing sense element packing density, interleaving a Z-axis layout to reduce a subtractive effect, and optimizing an alignment between a Z-axis sense element and a flux guide, etc.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 20, 2020
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. Mather, Anuraag Mohan
  • Publication number: 20190212399
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor comprises a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 11, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal ENGEL, Phillip G. MATHER
  • Patent number: 10281531
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: May 7, 2019
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal Engel, Phillip G. Mather
  • Patent number: 10168397
    Abstract: A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: January 1, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Bradley Neal Engel, Guido De Sandre
  • Patent number: 10012707
    Abstract: A magnetic field sensor includes built-in self-test coils in a configuration to provide magnetic field stimulation along three axes, with a high field factor, and thus, reduce a power budget of the sensor and physical size of the self-test coils. The magnetic field sensor comprises a first bridge circuit including a plurality of sense elements configured to sense a magnetic field. The magnetic field sensor further comprises re-configurable self-test current lines coupled to a self-test source to perform high field, high power wafer and die level testing and trim, as well as low power in-situ characterization and calibration of the sensor. The self-test current lines may be routed to form a coil with multiple turns around the TMR elements.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: July 3, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Anuraag Mohan, Guido De Sandre
  • Publication number: 20180156876
    Abstract: A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 7, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Bradley Neal Engel, Guido De Sandre
  • Patent number: 9910106
    Abstract: A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 6, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Bradley Neal Engel, Guido De Sandre
  • Patent number: 9632150
    Abstract: In one embodiment, a TMR field sensor utilizes existing one or more self-test current lines in a configuration to extend magnetic field measurement range without sacrificing measurement sensitivity. The self-test current lines are energized to facilitate magnetic field measurement when the measured magnetic field reaches a threshold. The magnetic field created by self-test coil opposes an external magnetic field being measured to keep the net magnetic field within a desired range where the magnetic field sensor has linear output and desired sensitivity.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 25, 2017
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Anuraag Mohan, Phillip G. Mather
  • Publication number: 20170074948
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor comprises a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 16, 2017
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal ENGEL, Phillip G. MATHER
  • Patent number: 9519034
    Abstract: A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor provides a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: December 13, 2016
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Bradley Neal Engel, Phillip G. Mather
  • Publication number: 20160320460
    Abstract: Various means for improvement in signal-to-noise ratio (SNR) for a magnetic field sensor are disclosed for low power and high resolution magnetic sensing. The improvements may be done by reducing parasitic effects, increasing sense element packing density, interleaving a Z-axis layout to reduce a subtractive effect, and optimizing an alignment between a Z-axis sense element and a flux guide, etc.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 3, 2016
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. MATHER, Anuraag MOHAN
  • Publication number: 20160320459
    Abstract: A system, device, and method are disclosed for a tunneling magnetoresistance (TMR) magnetic sensor to effectively increase magnetic field measurement linearity and minimize cross-axis interference. The TMR magnetic sensor comprises a plurality of transducer legs, each having multiple sense elements. The TMR magnetic sensor comprises a plurality of built-in current lines located adjacent to each sense element. The current lines are routed such that two or more sense elements have magnetic responses that have opposing contributions from the cross-axis effect for a given field direction in each transducer leg within the TMR magnetic sensor. Therefore, the overall field response from each transducer leg is internally compensated and the TMR magnetic sensor has an output with minimal cross-axis interference.
    Type: Application
    Filed: April 20, 2016
    Publication date: November 3, 2016
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip G. MATHER, Bradley Neal ENGEL, Guido DE SANDRE