Patents by Inventor Phillip Kopp

Phillip Kopp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230283074
    Abstract: This disclosure provides systems, method, and computer-readable media for operating a sensor network. The sensor network can include an array of sensor devices and gateways. The sensor devices can sense various conditions of an environment. The sensor devices can include temperature sensors, occupancy detectors, access sensors, motion sensors, tracking devices, etc. The sensor devices can also network and communicate with one another and the gateways in an ad hoc or mesh network. The environment can include different locations, such as warehouse, office building, a complex of buildings, cargo vehicles, containers or the like. The sensor network can be deployed for controlling power consumption, logistics, automated manufacturing, healthcare, intelligent buildings, and smart cities among many other implementations. The sensor devices can communicate sensed conditions and transmit data among each other without a predefined route.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 7, 2023
    Inventors: Ekawahyu SUSILO, Phillip KOPP
  • Patent number: 11720134
    Abstract: The present disclosure provides a method and system for predicting a potential future energy consumption of a plurality of energy loads in a built environment. The method includes a step of collecting a first set of statistical data associated with a plurality of energy consuming devices. The method includes another step of accumulating a second set of statistical data associated with each of a plurality of users present inside the built environment. The method includes yet another step of analyzing the first set of statistical data and the second set of statistical data. In addition, the method includes yet another step of predicting a set of predictions associated with the potential future energy consumption of each of the plurality of energy consuming devices.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: August 8, 2023
    Assignee: Conectric, LLC
    Inventors: Phillip Kopp, Wolfgang Lukaschek
  • Publication number: 20230169427
    Abstract: A computer-implemented method and system is provided. The system adaptively switches prediction strategies to optimize time-variant energy demand and consumption of built environments associated with renewable energy sources. The system analyzes a first, second, third, fourth and a fifth set of statistical data. The system derives of a set of prediction strategies for controlled and directional execution of analysis and evaluation of a set of predictions for optimum usage and operation of the plurality of energy consuming devices. The system monitors a set of factors corresponding to the set of prediction strategies and switches a prediction strategy from the set of derived prediction strategies. The system predicts a set of predictions for identification of a potential future time-variant energy demand and consumption and predicts a set of predictions. The system manipulates an operational state of the plurality of energy consuming devices and the plurality of energy storage and supply means.
    Type: Application
    Filed: November 7, 2022
    Publication date: June 1, 2023
    Inventor: Phillip KOPP
  • Patent number: 11605973
    Abstract: This disclosure provides systems, method, and computer-readable media for operating a sensor network. The sensor network can include an array of sensor devices and gateways. The sensor devices can sense various conditions of an environment. The sensor devices can include temperature sensors, occupancy detectors, access sensors, motion sensors, tracking devices, etc. The sensor devices can also network and communicate with one another and the gateways in an ad hoc or mesh network. The environment can include different locations, such as warehouse, office building, a complex of buildings, cargo vehicles, containers or the like. The sensor network can be deployed for controlling power consumption, logistics, automated manufacturing, healthcare, intelligent buildings, and smart cities among many other implementations. The sensor devices can communicate sensed conditions and transmit data among each other without a predefined route.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: March 14, 2023
    Assignee: Conectric, LLC
    Inventors: Ekawahyu Susilo, Phillip Kopp
  • Patent number: 11493895
    Abstract: A computer-implemented method and system is provided. The system adaptively switches prediction strategies to optimize time-variant energy demand and consumption of built environments associated with renewable energy sources. The system analyzes a first, second, third, fourth and a fifth set of statistical data. The system derives of a set of prediction strategies for controlled and directional execution of analysis and evaluation of a set of predictions for optimum usage and operation of the plurality of energy consuming devices. The system monitors a set of factors corresponding to the set of prediction strategies and switches a prediction strategy from the set of derived prediction strategies. The system predicts a set of predictions for identification of a potential future time-variant energy demand and consumption and predicts a set of predictions. The system manipulates an operational state of the plurality of energy consuming devices and the plurality of energy storage and supply means.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 8, 2022
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Patent number: 11150679
    Abstract: The present disclosure provides a system and method for recommending one or more potential changes in operating parameters of a built environment. The one or more potential changes are associated with a plurality of energy load sources. The method includes a step of fetching a first set of statistical data associated with each of a plurality of energy consuming devices. The method includes another step of collecting a third set of statistical data associated with one or more ambient parameters of the built environment. The method includes yet another step of analyzing the first set of statistical data, the second set of statistical data and the third set of statistical data. In addition, the method includes yet another step of recommending the one or more potential changes for the energy consumption of each of the plurality of energy consuming devices.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 19, 2021
    Assignee: CONECTRIC, LLC
    Inventors: Phillip Kopp, Wolfgang Lukaschek
  • Patent number: 11144021
    Abstract: The present disclosure provides a computer-implemented method for recommending one or more control schemes for controlling peak loading conditions and abrupt changes in energy pricing of one or more built environments associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes analysis of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes recommendation of one or more control schemes to a plurality of energy consuming devices and a plurality of energy storage and supply means.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: October 12, 2021
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Patent number: 10860959
    Abstract: The present disclosure provides a computer-implemented method for ranking one or more control schemes for controlling peak loading conditions and abrupt changes in energy pricing of one or more built environments associated with renewable energy sources. The computer-implemented method includes analysis of a first set of statistical data, a second set of statistical data, a third set of statistical data, a fourth set of statistical data and a fifth set of statistical data. Further, the computer-implemented method includes identification and execution of the one or more control schemes. In addition, the computer-implemented method includes scoring the one or more control schemes by evaluating a probabilistic score. Further, the computer-implemented method includes ranking the one or more control schemes to determine relevant control schemes for controlling real time peak loading conditions and abrupt changes in energy pricing associated with the one or more built environments.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 8, 2020
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Patent number: 10853749
    Abstract: A computer-implemented method and system is provided. The system manipulates load curves corresponding to time-variant energy demand and consumption of a built environment. The system analyzes a first, second, third, fourth and a fifth set of data. The first set of data is associated with energy consuming devices. The second set of data is associated with an occupancy behavior of users. The third set of data is associated with energy storage and supply means. The fourth set of data is associated with environmental sensors. The fifth set of data is associated with energy pricing models. The system executes control routines for controlling peak loading conditions associated with the built environment. The system manipulates an optimized operating state of the energy consuming devices. The system integrates the energy storage and supply means for optimal reduction of the peak level of energy demand concentrated over the limited period of time.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 1, 2020
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Patent number: 10832192
    Abstract: The present disclosure provides a computer-implemented method for prioritizing one or more instructional control strategies to reduce time-variant energy demand of a built environment associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes parsing and comparison of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes identification and prioritization of one or more instructional control strategies to reduce the time-variant energy demand associated with the built environment.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 10, 2020
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Publication number: 20200234209
    Abstract: A computer-implemented method and system is provided. The system adaptively switches prediction strategies to optimize time-variant energy demand and consumption of built environments associated with renewable energy sources. The system analyzes a first, second, third, fourth and a fifth set of statistical data. The system derives of a set of prediction strategies for controlled and directional execution of analysis and evaluation of a set of predictions for optimum usage and operation of the plurality of energy consuming devices. The system monitors a set of factors corresponding to the set of prediction strategies and switches a prediction strategy from the set of derived prediction strategies. The system predicts a set of predictions for identification of a potential future time-variant energy demand and consumption and predicts a set of predictions. The system manipulates an operational state of the plurality of energy consuming devices and the plurality of energy storage and supply means.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventor: Phillip KOPP
  • Patent number: 10650336
    Abstract: A computer-implemented method and system is provided. The system adaptively switches prediction strategies to optimize time-variant energy demand and consumption of built environments associated with renewable energy sources. The system analyzes a first, second, third, fourth and a fifth set of statistical data. The system derives of a set of prediction strategies for controlled and directional execution of analysis and evaluation of a set of predictions for optimum usage and operation of the plurality of energy consuming devices. The system monitors a set of factors corresponding to the set of prediction strategies and switches a prediction strategy from the set of derived prediction strategies. The system predicts a set of predictions for identification of a potential future time-variant energy demand and consumption and predicts a set of predictions. The system manipulates an operational state of the plurality of energy consuming devices and the plurality of energy storage and supply means.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: May 12, 2020
    Assignee: Conectric, LLC
    Inventor: Phillip Kopp
  • Publication number: 20200136429
    Abstract: This disclosure provides systems, method, and computer-readable media for operating a sensor network. The sensor network can include an array of sensor devices and gateways. The sensor devices can sense various conditions of an environment. The sensor devices can include temperature sensors, occupancy detectors, access sensors, motion sensors, tracking devices, etc. The sensor devices can also network and communicate with one another and the gateways in an ad hoc or mesh network. The environment can include different locations, such as warehouse, office building, a complex of buildings, cargo vehicles, containers or the like. The sensor network can be deployed for controlling power consumption, logistics, automated manufacturing, healthcare, intelligent buildings, and smart cities among many other implementations. The sensor devices can communicate sensed conditions and transmit data among each other without a predefined route.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Inventors: Ekawahyu SUSILO, Phillip KOPP
  • Publication number: 20190197447
    Abstract: A computer-implemented method and system is provided. The system manipulates load curves corresponding to time-variant energy demand and consumption of a built environment. The system analyzes a first, second, third, fourth and a fifth set of data. The first set of data is associated with energy consuming devices. The second set of data is associated with an occupancy behavior of users. The third set of data is associated with energy storage and supply means. The fourth set of data is associated with environmental sensors. The fifth set of data is associated with energy pricing models. The system executes control routines for controlling peak loading conditions associated with the built environment. The system manipulates an optimized operating state of the energy consuming devices. The system integrates the energy storage and supply means for optimal reduction of the peak level of energy demand concentrated over the limited period of time.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventor: Phillip KOPP
  • Publication number: 20190171987
    Abstract: The present disclosure provides a computer-implemented method for prioritizing one or more instructional control strategies to reduce time-variant energy demand of a built environment associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes parsing and comparison of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes identification and prioritization of one or more instructional control strategies to reduce the time-variant energy demand associated with the built environment.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventor: Phillip KOPP
  • Publication number: 20190171245
    Abstract: The present disclosure provides a system and method for recommending one or more potential changes in operating parameters of a built environment. The one or more potential changes are associated with a plurality of energy load sources. The method includes a step of fetching a first set of statistical data associated with each of a plurality of energy consuming devices. The method includes another step of collecting a third set of statistical data associated with one or more ambient parameters of the built environment. The method includes yet another step of analyzing the first set of statistical data, the second set of statistical data and the third set of statistical data. In addition, the method includes yet another step of recommending the one or more potential changes for the energy consumption of each of the plurality of energy consuming devices.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Phillip KOPP, Wolfgang LUKASCHEK
  • Patent number: 10223656
    Abstract: A computer-implemented method and system is provided. The system manipulates load curves corresponding to time-variant energy demand and consumption of a built environment. The system analyzes a first, second, third, fourth and a fifth set of data. The first set of data is associated with energy consuming devices. The second set of data is associated with an occupancy behavior of users. The third set of data is associated with energy storage and supply means. The fourth set of data is associated with environmental sensors. The fifth set of data is associated with energy pricing models. The system executes control routines for controlling peak loading conditions associated with the built environment. The system manipulates an optimized operating state of the energy consuming devices. The system integrates the energy storage and supply means for optimal reduction of the peak level of energy demand concentrated over the limited period of time.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: March 5, 2019
    Assignee: Conectric, LLC
    Inventor: Phillip Kopp
  • Patent number: 10203713
    Abstract: The present disclosure provides a system and method for recommending one or more potential changes in operating parameters of a built environment. The one or more potential changes are associated with a plurality of energy load sources. The method includes a step of fetching a first set of statistical data associated with each of a plurality of energy consuming devices. The method includes another step of collecting a third set of statistical data associated with one or more ambient parameters of the built environment. The method includes yet another step of analyzing the first set of statistical data, the second set of statistical data and the third set of statistical data. In addition, the method includes yet another step of recommending the one or more potential changes for the energy consumption of each of the plurality of energy consuming devices.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 12, 2019
    Assignee: CONECTRIC, LLC
    Inventors: Phillip Kopp, Wolfgang Lukaschek
  • Patent number: 10198703
    Abstract: The present disclosure provides a computer-implemented method for prioritizing one or more instructional control strategies to reduce time-variant energy demand of a built environment associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes parsing and comparison of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes identification and prioritization of one or more instructional control strategies to reduce the time-variant energy demand associated with the built environment.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: February 5, 2019
    Assignee: CONECTRIC, LLC
    Inventor: Phillip Kopp
  • Publication number: 20170329290
    Abstract: The present disclosure provides a computer-implemented method for recommending one or more control schemes for controlling peak loading conditions and abrupt changes in energy pricing of one or more built environments associated with renewable energy sources. The computer-implemented method includes collection of a first set of statistical data, fetching of a second set of statistical data, accumulation of a third set of statistical data, reception of a fourth set of statistical data and gathering of fifth set of statistical data. Further, the computer-implemented method includes analysis of the first set of statistical data, the second set of statistical data, the third set of statistical data, the fourth set of statistical data and the fifth set of statistical data. In addition, the computer-implemented method includes recommendation of one or more control schemes to a plurality of energy consuming devices and a plurality of energy storage and supply means.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 16, 2017
    Inventor: Phillip Kopp