Patents by Inventor Phillip Mather

Phillip Mather has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090335
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 14, 2024
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Publication number: 20240072351
    Abstract: The present system as disclosed herein provides for a battery mount system configured to position batteries below an upper plane of a cross member of an electric vehicle chassis. The system of the present application provides a semi-isolated electric vehicle battery mount for a torsionally flexible chassis. The system includes a bracket configured to enable the batteries to be positioned below and between the cross members of the chassis. The bracket generally includes battery hangers and corresponding mounts, a pivot, a pivot pin, a pivot bracket all mounted to the cross member enabling the batteries to rest below an upper plane of the cross member and pivotable with respect to the cross member.
    Type: Application
    Filed: August 29, 2023
    Publication date: February 29, 2024
    Inventors: Anthony G. Junga, Phillip Mather, Hara Peruri, Frank Burger
  • Patent number: 11835601
    Abstract: In one embodiment, a magnetoresistive (MR) magnetic field sensor system includes a MR magnetic field sensor bridge. The MF magnetic field sensor bridge includes a sense leg with a sense element with a first layer with a first fixed magnetization orientation and, a second layer with a first free magnetization orientation, the first free magnetization orientation orthogonal to the first fixed magnetization orientation at a zero applied magnetic field. A reference leg of the MF magnetic field sensor bridge is electronically connected in parallel to the sense leg. The reference leg includes at least one reference element with a third layer with a second fixed magnetization orientation parallel to, and in the same direction as, the first fixed magnetization orientation, and a fourth layer with a second free magnetization orientation, the second free magnetization orientation parallel to the first fixed magnetization orientation at the zero applied magnetic field.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 5, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Brad Engel, Phillip Mather
  • Patent number: 11800810
    Abstract: A magnetic field sensor structure includes a magnetoresistive sensor assembly and a transistor assembly. A dielectric layer is deposited on the transistor assembly. The dielectric layer includes a trench that exposes an interconnect of the transistor assembly. A damascene process is performed to form an ultra-thick metal (UTM) layer within the trench to create a first metal coil. The first metal coil is configured as a first reset component. Another dielectric layer is formed on the first metal coil. A flux guide is formed within the another dielectric layer. A second metal coil is formed over the another dielectric layer. The second metal coil is configured as a second reset component. The first reset component and the second reset component are configured as a reset mechanism, which is responsive to the transistor assembly and operable to magnetize the flux guide to a predetermined orientation.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: October 24, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Phillip Mather, Cheng-Han Yang
  • Patent number: 11678584
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: June 13, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: 11598829
    Abstract: A magnetic field sensor array includes a plurality of sensor segments, each including a plurality of magnetic field sensors. A magnetizing current conductor is situated so as to run in the area of the magnetic field sensors in such a way that elements of the magnetic field sensors may be magnetized. A plurality of parallel-connected half-bridges, each including a high switch pJ and a low switch nJ, each include a center tap connection situated between the switches. The magnetizing current conductor is connected to each center tap connection, by means of which the magnetizing current conductor is divided into separately activatable magnetizing segments. Elements of a sensor segment are magnetized in that two switches nJ and pJ+1 having different electrical potentials, or alternatively pJ and nJ+1, of two directly adjacent half-bridges are closed simultaneously. At least one further switch nX<J or pY>J+1 or alternatively pX<J or nY>J+1 is closed.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 7, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Brad Engel, Carlo Alberto Romani, Guido De Sandre, Johannes Artzner, Phillip Mather, Martin Maschmann
  • Patent number: 11422206
    Abstract: A sensor structure includes sensing elements, a flux guide, and a flux guide reset mechanism. The flux guide is configured to guide magnetic flux in a plane for detection by the sensing elements. The flux guide reset mechanism is configured to set the flux guide to a predetermined magnetic orientation. The flux guide reset mechanism includes at least a first coil and a second coil. The first coil is configured to generate a first magnetic field. The first coil includes first coil segments. The second coil is configured to generate a second magnetic field. The second coil includes second coil segments. The flux guide is disposed between the first coil and the second coil. The first coil segments and the second coil segments are configured such that a first magnetic field profile of the first magnetic field is coherent with a second magnetic field profile of the second magnetic field with respect to at least at a region of the flux guide that overlaps the sensing elements.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: August 23, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Boris Livshitz, Phillip Mather
  • Publication number: 20220165941
    Abstract: A magnetic field sensor structure and a method for fabricating the magnetic field sensor structure are disclosed. The magnetic field sensor structure includes at least a magnetoresistive sensor assembly and a transistor assembly, which integrated on a single chip. The transistor assembly includes at least a semiconductor device and a first interconnect. The first interconnect is operably connected to the semiconductor device. The method includes depositing a dielectric layer on the transistor assembly. The method includes removing portions of the dielectric layer to form a first trench that exposes the first interconnect. The method includes performing a damascene process to form an ultra-thick metal (UTM) layer within the first trench to create a first metal coil. The first metal coil is configured as a first reset component. The method includes depositing another dielectric layer on the first metal coil. The method includes forming a flux guide within the another dielectric layer.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Inventors: Phillip Mather, Cheng-Han Yang
  • Publication number: 20220163604
    Abstract: A sensor structure includes sensing elements, a flux guide, and a flux guide reset mechanism. The flux guide is configured to guide magnetic flux in a plane for detection by the sensing elements. The flux guide reset mechanism is configured to set the flux guide to a predetermined magnetic orientation. The flux guide reset mechanism includes at least a first coil and a second coil. The first coil is configured to generate a first magnetic field. The first coil includes first coil segments. The second coil is configured to generate a second magnetic field. The second coil includes second coil segments. The flux guide is disposed between the first coil and the second coil. The first coil segments and the second coil segments are configured such that a first magnetic field profile of the first magnetic field is coherent with a second magnetic field profile of the second magnetic field with respect to at least at a region of the flux guide that overlaps the sensing elements.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Inventors: Boris Livshitz, Phillip Mather
  • Patent number: 11237231
    Abstract: An out-of-plane tunneling magnetoresistive (TMR) magnetic field sensor includes a sense element that defines a sense plane and a flux guide configured to direct a magnetic field perpendicular to the sense plane into the sense plane. The magnetic field sensor further includes a first coil arranged in a first plane, a second coil electrically insulated from the first coil and arranged in a spaced-apart second plane, and drive circuitry operatively connected to the first coil and the second coil. The drive circuitry in a first mode energizes the first and second coils to generate respective first and second fields that combine to set a magnetization of the flux guide. The drive circuitry in a second mode energizes only the first coil to generate the first field so as to set a magnetization of the sense element without changing the magnetization of the flux guide.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Anuraag Mohan, Phillip Mather, Guido De Sandre
  • Publication number: 20220026508
    Abstract: A magnetic field sensor array includes a plurality of sensor segments, each including a plurality of magnetic field sensors. A magnetizing current conductor is situated so as to run in the area of the magnetic field sensors in such a way that elements of the magnetic field sensors may be magnetized. A plurality of parallel-connected half-bridges, each including a high switch pJ and a low switch nJ, each include a center tap connection situated between the switches. The magnetizing current conductor is connected to each center tap connection, by means of which the magnetizing current conductor is divided into separately activatable magnetizing segments. Elements of a sensor segment are magnetized in that two switches nJ and pJ+1 having different electrical potentials, or alternatively pJ and nJ+1, of two directly adjacent half-bridges are closed simultaneously. At least one further switch nX<J or pY>J+1 or alternatively pX<j or nY>J+1 is closed.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 27, 2022
    Inventors: Brad Engel, Carlo Alberto Romani, Guido De Sandre, Johannes Artzner, Phillip Mather, Martin Maschmann
  • Publication number: 20210265563
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Patent number: 11024799
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 1, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Publication number: 20200371171
    Abstract: An out-of-plane tunneling magnetoresistive (TMR) magnetic field sensor includes a sense element that defines a sense plane and a flux guide configured to direct a magnetic field perpendicular to the sense plane into the sense plane. The magnetic field sensor further includes a first coil arranged in a first plane, a second coil electrically insulated from the first coil and arranged in a spaced-apart second plane, and drive circuitry operatively connected to the first coil and the second coil. The drive circuitry in a first mode energizes the first and second coils to generate respective first and second fields that combine to set a magnetization of the flux guide. The drive circuitry in a second mode energizes only the first coil to generate the first field so as to set a magnetization of the sense element without changing the magnetization of the flux guide.
    Type: Application
    Filed: December 20, 2018
    Publication date: November 26, 2020
    Inventors: Anuraag Mohan, Phillip Mather, Guido De Sandre
  • Publication number: 20200333408
    Abstract: In one embodiment, a magnetoresistive (MR) magnetic field sensor system includes a MR magnetic field sensor bridge. The MF magnetic field sensor bridge includes a sense leg with a sense element with a first layer with a first fixed magnetization orientation and, a second layer with a first free magnetization orientation, the first free magnetization orientation orthogonal to the first fixed magnetization orientation at a zero applied magnetic field. A reference leg of the MF magnetic field sensor bridge is electronically connected in parallel to the sense leg. The reference leg includes at least one reference element with a third layer with a second fixed magnetization orientation parallel to, and in the same direction as, the first fixed magnetization orientation, and a fourth layer with a second free magnetization orientation, the second free magnetization orientation parallel to the first fixed magnetization orientation at the zero applied magnetic field.
    Type: Application
    Filed: December 11, 2018
    Publication date: October 22, 2020
    Inventors: Brad Engel, Phillip Mather
  • Publication number: 20190221737
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Patent number: 10276789
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 30, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Publication number: 20180130944
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: 9893274
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 13, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: RE49404
    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 31, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip Mather, Jon Slaughter, Nicholas Rizzo