Patents by Inventor Phillip William Wallace

Phillip William Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10416005
    Abstract: An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: September 17, 2019
    Assignee: Hifi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Tom Clement
  • Patent number: 10368787
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: August 6, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Samuel Reichgott, Walter J. Shakespeare, George Kechter, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20190216370
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 10278626
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: May 7, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Publication number: 20180356210
    Abstract: There is described a method for interrogating optical fiber comprising fiber Bragg gratings (“FBGs”), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
    Type: Application
    Filed: January 11, 2018
    Publication date: December 13, 2018
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Chris Henrikson, Ajay Sandhu, Adrian Dumitru, Thomas Clement, Dongliang Huang, Seyed Ehsan Jalilian
  • Publication number: 20180266854
    Abstract: An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
    Type: Application
    Filed: December 4, 2015
    Publication date: September 20, 2018
    Applicant: Hifi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Tom Clement
  • Publication number: 20180249933
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Application
    Filed: February 15, 2018
    Publication date: September 6, 2018
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 9924893
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: March 27, 2018
    Assignee: MASIMO CORPORATION
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Publication number: 20180064381
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 9833180
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: December 5, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20160058347
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: May 13, 2015
    Publication date: March 3, 2016
    Inventors: Samuel Reichgott, Walter J. Shakespeare, George Kechter, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 9060721
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 23, 2015
    Assignee: GLT ACQUISITION CORP.
    Inventors: Samuel Reichgott, Walter J. Shakespeare, George Kechter, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20150126830
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Application
    Filed: August 4, 2014
    Publication date: May 7, 2015
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 9002372
    Abstract: Mentally challenged persons such as autistic children and Alzheimer's patients can become lost and they are hard to find because they have difficulty communicating or they are confused and disoriented. The present invention provides an apparatus, system and methods for locating lost persons (or animals or packages) whether they are indoors or outdoors. The apparatus comprises a cellular telephone unit which can be activated by a RF signal and which a child or patient can wear. The wearable unit can be activated by a caregiver's smart phone having a locating application installed therein. The locating application enables the caregiver to locate the lost person using radio direction finder triangulation when the lost person is within a few hundred feet of the caregiver. When the lost person is further away, the locating application employs cell phone tower triangulation or the wearable unit GPS/Assisted GPS application to determine an approximate location of the lost person.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: April 7, 2015
    Assignee: Danielle's Buddy, Inc.
    Inventors: Walter Jeffrey Shakespeare, Clarence William Crompton, Lawrence P. Levitt, Sharone Vaknin, Phillip William Wallace
  • Publication number: 20140336481
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 13, 2014
    Applicant: GLT ACQUISITION CORP.
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 8831700
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 9, 2014
    Assignee: GLT Acquisition Corp.
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Patent number: 8768423
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: July 1, 2014
    Assignee: GLT Acquisition Corp.
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20140051952
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Applicant: GLT ACQUISITION CORP.
    Inventors: Samuel Reichgott, Walter J. Shakespeare, George Kechter, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 8571617
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 29, 2013
    Assignee: GLT Acquisition Corp.
    Inventors: Samuel Reichgott, Walter J. Shakespeare, George Kechter, Phillip William Wallace, Matthew J. Schurman
  • Publication number: 20130260785
    Abstract: Mentally challenged persons such as autistic children and Alzheimer's patients can become lost and they are hard to find because they have difficulty communicating or they are confused and disoriented. The present invention provides an apparatus, system and methods for locating lost persons (or animals or packages) whether they are indoors or outdoors. The apparatus comprises a cellular telephone unit which can be activated by a RF signal and which a child or patient can wear. The wearable unit can be activated by a caregiver's smart phone having a locating application installed therein. The locating application enables the caregiver to locate the lost person using radio direction finder triangulation when the lost person is within a few hundred feet of the caregiver. When the lost person is further away, the locating application employs cell phone tower triangulation or the wearable unit GPS/Assisted GPS application to determine an approximate location of the lost person.
    Type: Application
    Filed: October 23, 2012
    Publication date: October 3, 2013
    Applicant: Danielle's Buddy, Inc.
    Inventors: Walter Jeffrey Shakespeare, Clarence William Crompton, Lawrence P. Levitt, Sharone Vaknin, Phillip William Wallace