Patents by Inventor Phillipe Renaud

Phillipe Renaud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7654078
    Abstract: A particle collector includes a housing within an internal chamber having inlet and outlet ports. The housing can comprise two joined-together housing members. A collector element is disposed in the internal chamber and includes a particulate passage extending axially therethrough. A gas passageway is disposed within the chamber between a housing inside diameter and a collector element outside diameter, and is sized to produce a minimal pressure drop through the particle collector. The collector element is connected to the housing. A collection port is connected with the collector element and extends from the particulate passage to a location outside of the internal chamber for removing collected particulate matter from within the housing when the particle collector is placed into operation within an exhaust gas flow stream.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 2, 2010
    Assignee: Honeywell International, Inc.
    Inventors: Damien Marsal, Phillipe Renaud, Jerome Mlika
  • Publication number: 20090104023
    Abstract: The shape, of a vane for use in a variable nozzle assembly of a turbocharger was designed, including a step of defining a camberline curve and a thickness curve by means of two Bézier curves having a certain number of control points, and a step of applying computational fluid dynamics analysis and a Design of Experiments methodology for optimizing the setting of the control points to improve performance of the vane. As result, a distinct vane shape as shown in the drawings was obtained.
    Type: Application
    Filed: July 19, 2005
    Publication date: April 23, 2009
    Inventors: Frederic Favray, Phillipe Renaud, Denis Tisserant
  • Publication number: 20070256411
    Abstract: A particle collector includes a housing within an internal chamber having inlet and outlet ports. The housing can comprise two joined-together housing members. A collector element is disposed in the internal chamber and includes a particulate passage extending axially therethrough. A gas passageway is disposed within the chamber between a housing inside diameter and a collector element outside diameter, and is sized to produce a minimal pressure drop through the particle collector. The collector element is connected to the housing. A collection port is connected with the collector element and extends from the particulate passage to a location outside of the internal chamber for removing collected particulate matter from within the housing when the particle collector is placed into operation within an exhaust gas flow stream.
    Type: Application
    Filed: May 8, 2006
    Publication date: November 8, 2007
    Inventors: Damien Marsal, Phillipe Renaud, Jerome Mlika
  • Publication number: 20070119908
    Abstract: A titanium-aluminide turbine wheel (120, 220, 320, 420) is joined to the end of a shaft (110, 210, 310, 410) by utilizing a titanium surface on the end of the shaft to be joined to the wheel, and electron-beam welding the wheel onto the titanium surface on the shaft. A steel shaft (110, 310, 410) can have a titanium-containing end piece (130, 330, 430) mechanically joined (by brazing, bonding, or welding) to the end of the shaft, and the end piece can be directly electron-beam welded to the wheel. Alternatively, the shaft (210) can be formed as a titanium member and the end (212) of the shaft can be directly electron-beam welded to the wheel (220). In another embodiment, a ferrous end piece (330) is mechanically joined to the titanium-aluminide turbine wheel (320) and then the end piece is directly electron-beam welded to the end of a steel shaft (310). Alternatively, a silver-titanium alloy member (430) is sandwiched between the wheel (420) and a steel shaft (410) and is melted to join the parts together.
    Type: Application
    Filed: December 28, 2006
    Publication date: May 31, 2007
    Inventors: Phillipe Renaud, Marc Wilson
  • Patent number: 7156282
    Abstract: A titanium-aluminide turbine wheel (120, 220, 320, 420) is joined to the end of a shaft (110, 210, 310, 410) by utilizing a titanium surface on the end of the shaft to be joined to the wheel, and electron-beam welding the wheel onto the titanium surface on the shaft. A steel shaft (110, 310, 410) can have a titanium-containing end piece (130, 330, 430) mechanically joined (by brazing, bonding, or welding) to the end of the shaft, and the end piece can be directly electron-beam welded to the wheel. Alternatively, the shaft (210) can be formed as a titanium member and the end (212) of the shaft can be directly electron-beam welded to the wheel (220). In another embodiment, a ferrous end piece (330) is mechanically joined to the titanium-aluminide turbine wheel (320) and then the end piece is directly electron-beam welded to the end of a steel shaft (310). Alternatively, a silver-titanium alloy member (430) is sandwiched between the wheel (420) and a steel shaft (410) and is melted to join the parts together.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: January 2, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Phillipe Renaud, Marc Wilson
  • Publication number: 20040250700
    Abstract: A method of injecting steam into a landfill is provided. The steam enhances methane gas production in the landfill during the anaerobic phase, accelerates decomposition/biodegradation of the organic component of the trash prism during both the aerobic and anaerobic phases, and increases the rate of settlement of the landfill. A method of introducing a gaseous anaerobic fertilizer into the landfill is also provided. The fertilizer accelerates the decomposition/biodegradation of the organic component of the trash prism. A method of reducing the volume of a plastic component of the trash prism is provided, wherein the temperature and pressure of injected steam are raised to a level sufficient to melt plastic. Methods and apparatus for reducing the volume of a quantity of refuse prior to placing the refuse in a landfill are provided. The refuse is heated with steam and also compacted.
    Type: Application
    Filed: February 12, 2004
    Publication date: December 16, 2004
    Inventor: Regis Phillip Renaud
  • Publication number: 20030053866
    Abstract: A method of injecting steam into a landfill is provided. The steam enhances methane gas production in the landfill during the anaerobic phase, accelerates decomposition/biodegradation of the organic component of the trash prism during both the aerobic and anaerobic phases, and increases the rate of settlement of the landfill. A method of introducing a gaseous anaerobic fertilizer into the landfill is also provided. The fertilizer accelerates the decomposition/biodegradation of the organic component of the trash prism. A method of reducing the volume of a plastic component of the trash prism is provided, wherein the temperature and pressure of injected steam are raised to a level sufficient to melt plastic. Finally, a method of reducing the volume of a quantity of refuse prior to placing the refuse in a landfill is provided, wherein the refuse is heated to melt a plastic component of the refuse.
    Type: Application
    Filed: October 29, 2002
    Publication date: March 20, 2003
    Inventor: Regis Phillip Renaud
  • Patent number: 6471443
    Abstract: A method of injecting steam into a landfill is provided. The steam enhances methane gas production in the landfill during the anaerobic phase, accelerates decomposition/biodegradation of the organic component of the trash prism during both the aerobic and anaerobic phases, and increases the rate of settlement of the landfill. A method of introducing a gaseous anaerobic fertilizer into the landfill is also provided. The fertilizer accelerates the decomposition/biodegradation of the organic component of the trash prism. A method of reducing the volume of a plastic component of the trash prism is provided, wherein the temperature and pressure of injected steam are raised to a level sufficient to melt plastic. Finally, a method of reducing the volume of a quantity of refuse prior to placing the refuse in a landfill is provided, wherein the refuse is heated to melt a plastic component of the refuse.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: October 29, 2002
    Inventor: Regis Phillip Renaud