Patents by Inventor Philseok Kim

Philseok Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150175814
    Abstract: A method of preparing an article having a slippery surface includes providing a metal-containing surface, chemically modifying the metal-containing surface to roughen the metal-containing surface, and disposing a lubricating layer on the roughened metal-containing surface, wherein the lubricating layer is substantially stabilized on the roughened metal-containing surface.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 25, 2015
    Inventors: Joanna Aizenberg, Michael Aizenberg, Philseok Kim
  • Publication number: 20150152270
    Abstract: The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 4, 2015
    Inventors: Joanna Aizenberg, Michael Aizenberg, Jiaxi Cui, Stuart Dunn, Benjamin Hatton, Caitlin Howell, Philseok Kim, Tak Sing Wong, Xi Yao
  • Publication number: 20150093823
    Abstract: A method for mechanical stimulation of cells includes providing a substrate comprising a plurality of microactuators embedded in an environmentally responsive hydrogel polymer layer disposed on a region of the surface; adhering at least one cell to the substrate; and exposing the environmentally responsive hydrogel polymer layer to a stimulus, the stimulus changing a volume of the environmentally responsive hydrogel polymer layer from a first volume to a second volume and thereby moving the microactuators from a first position to a second position, wherein the movement of the microactuators provides localized mechanical force directly to cells on the substrate.
    Type: Application
    Filed: December 2, 2013
    Publication date: April 2, 2015
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Amy Alexandra SUTTON, Tanya SHIRMAN, Joanna AIZENBERG, Lauren ZARZAR, Philseok KIM
  • Publication number: 20140342954
    Abstract: Articles, methods of making, and uses for modifying surfaces for liquid repellency are disclosed. The liquid repellant surfaces comprise a surface comprising an anchoring layer. The anchoring layer, which forms an immobilized molecular anchoring layer on the surface, has a head group that is covalently linked to, or adsorbed onto, the surface and a functional group. The functional group of the treated surface has an affinity for a lubricating layer, which is applied to the treated surface. The anchoring layer and replenishable lubricating layer are held together by non-covalent attractive forces. Together, these layers form an ultra-repellant slippery surface that repels certain immiscible liquids and prevents adsorption, coagulation, and surface fouling by components contained within.
    Type: Application
    Filed: January 10, 2013
    Publication date: November 20, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald Ingber, Daniel C. Leslie, Alexander L. Watters, Michael Super, Joanna Aizenberg, Michael Aizenberg, Philseok Kim, Anna Waterhouse
  • Publication number: 20140290732
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces (SLIPS). Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). SLIPS outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where SLIPS will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: December 24, 2013
    Publication date: October 2, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna AIZENBERG, Michael AIZENBERG, Sung Hoon KANG, Tak Sing WONG, Philseok KIM
  • Publication number: 20140290731
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces (SLIPS). Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). SLIPS outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where SLIPS will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: December 24, 2013
    Publication date: October 2, 2014
    Applicant: President and Fellows of Harvard College
    Inventors: Joanna AIZENBERG, Michael AIZENBERG, Sung Hoon KANG, Tak Sing WONG, Philseok KIM
  • Publication number: 20140147627
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces (SLIPS). Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). SLIPS outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where SLIPS will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 29, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna Aizenberg, Michael Aizenberg, Sung Hoon Kang, Philseok Kim, Kam Yan Tang, Tak Sing Wong
  • Publication number: 20140016177
    Abstract: Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.
    Type: Application
    Filed: November 29, 2011
    Publication date: January 16, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna Aizenberg, Michael Aizenberg, Philseok Kim
  • Publication number: 20130330501
    Abstract: A hierarchical surface having improved control of the wetting characteristics and methods for forming the same is described. The hierarchical surface includes a primary structure having at least one primary characteristic features; a secondary structure having at least one secondary characteristic features, wherein the size of the at least one secondary characteristic features are larger than the size of the at least one primary characteristic features. Moreover, the primary structure and the secondary structure synergistically provide improved mechanical properties and control of the wetting characteristics over that of the primary structure or the secondary structure alone.
    Type: Application
    Filed: July 19, 2011
    Publication date: December 12, 2013
    Inventors: Joanna Aizenberg, Philseok Kim
  • Publication number: 20130222881
    Abstract: An substrate having a second material on a surface of the substrate or embedded as a layer within the substrate are described. The second material has a different index of refraction and/or stiffness than the substrate so that stretching and unstretching of the substrate and the second material can induce wrinkles in the second material that interacts with light thereby allowing reversible change from a transparent state to an opaque or iridescent state, and vice versa. The present disclosure is useful as a shading system and/or displays.
    Type: Application
    Filed: June 10, 2011
    Publication date: August 29, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna Aizenberg, Philseok Kim, Jack Alvarenga
  • Publication number: 20100051917
    Abstract: Disclosed are embodiments of organic thin-film transistors (OTFT) with a gate insulator layer comprised of nanocomposites incorporating metal oxide nanoparticles coated by organic ligands and methods of fabricating such OTFTs. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: November 13, 2007
    Publication date: March 4, 2010
    Inventors: Bernard Kippelen, Joseph Perry, Seth Marder, Philseok Kim, Simon Jones, Joshua N. Haddock, Xiaohong Zhang, Benoit Domercq, Peter Hotchkiss