Patents by Inventor Phuong Huynh

Phuong Huynh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230318614
    Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230289015
    Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; determining, based on the positive capacitance variation data and the negative capacitance variation data, an upper threshold and a lower threshold; generating compensated capacitance image data, based on the upper threshold and the lower threshold; and processing the compensated capacitance image data to determine a proximal condition of the touch screen display.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
  • Publication number: 20230275590
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11720207
    Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; determining, based on the positive capacitance variation data and the negative capacitance variation data, an upper threshold and a lower threshold; generating compensated capacitance image data, based on the upper threshold and the lower threshold, to compensate for noise in the capacitance image data; and processing the compensated capacitance image data to determine a proximal condition of the touch screen display.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: August 8, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
  • Publication number: 20230246650
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230238971
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230238970
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Application
    Filed: March 29, 2023
    Publication date: July 27, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230238979
    Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 27, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11709189
    Abstract: An impedance sensing circuit includes first and second current sources and first and second bias current sources that are appropriately coupled to first and second resistors. The impedance sensing circuit also includes a comparator that compares a first voltage based on the first terminal of the first resistor to a second voltage based on the first terminal of the second resistor to generate a comparator output signal. Either the comparator output signal or a digital signal based on the comparator output signal operates to regulate the current signals output from the first and second current sources so that the first voltage is same as the second voltage. The comparator output signal and the digital signal is representative of a difference between the first voltage and the second voltage that is based on an impedance difference between the first resistor and the second resistor.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: July 25, 2023
    Assignee: SigmaSense, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11703975
    Abstract: A channel driver circuit includes a differential module and a driver module. In some examples, the channel driver circuit also includes a sigma-delta module. The differential module receives, via a single node of a load, a channel driving signal that is provided to the load at the single node (e.g., that is based on an electrical characteristic of the load) and generates an analog error signal that is based on the channel driving signal and a reference signal. The driver module is coupled to the differential module and generates the channel driving signal based on the analog error signal or a digital error signal corresponding to the analog error signal and transmits the channel driving signal via the single node to the load. The channel driver circuit simultaneously transmits the channel driving signal to the load at the single node and senses the channel driving signal at the single node.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: July 18, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Phuong Huynh
  • Publication number: 20230223951
    Abstract: An analog to digital converter (ADC) that is configured to service a photo-diode includes a capacitor and a self-referenced latched comparator. The capacitor produces a photo-diode voltage based on charging by a photo-diode current associated with the photo-diode and a digital to analog converter (DAC) source current and/or a DAC sink current. The self-referenced latched comparator generates a first digital signal that is based on a difference between the photo-diode voltage and a threshold voltage associated with the self-referenced latched comparator. Also, one or more processing modules executes operational instructions to process the first digital signal to generate a second digital signal and/or a third digital signal. An N-bit DAC generates the DAC source current based on the second digital signal, and an M-bit DAC generates the DAC sink current based on the third digital signal. The DAC source current and/or the DAC sink current tracks the photo-diode current.
    Type: Application
    Filed: January 4, 2023
    Publication date: July 13, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11700010
    Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: July 11, 2023
    Assignee: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11681360
    Abstract: A blended reality user interface and gesture control system includes one or more sensors, a head-mounted display, and a blending engine. The blending engine is configured to receive a live reality and virtual reality feeds, track movement of a user using the sensors, detect a command based on the tracked movement, blend the live and virtual reality feeds into a blended view based on the detected command, and display the blended view on the head-mounted display. In some embodiments, the blending engine is further configured to detect an amount of head tilt of the user and adjust a blending factor controlling an amount of transparency of the live reality feed within the blended view based on the amount of head tilt. In some embodiments, the blending engine is further configured to detect manipulation of a controller by the user and adjust the blending factor based on the detected manipulation.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: June 20, 2023
    Inventors: Rouslan Lyubomirov Dimitrov, Allison Phuong Huynh
  • Patent number: 11683045
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: June 20, 2023
    Assignee: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230179213
    Abstract: An analog to digital converter (ADC) senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. The digital output signal provided to the N-bit DAC is an inverse function of the load current. The ADC is operative to sense very low currents (e.g., currents as low as 1 s of pico-amps) and consume very little power (e.g., less than 2 µW).
    Type: Application
    Filed: January 4, 2023
    Publication date: June 8, 2023
    Applicant: SigmaSense, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230170918
    Abstract: An analog to digital converter (ADC) that is configured to service a photo-diode includes a capacitor and a self-referenced latched comparator. The capacitor produces a photo-diode voltage based on charging by a photo-diode current associated with the photo-diode and a digital to analog converter (DAC) source current and/or a DAC sink current. The self-referenced latched comparator generates a first digital signal that is based on a difference between the photo-diode voltage and a threshold voltage associated with the self-referenced latched comparator. Also, one or more processing modules executes operational instructions to process the first digital signal to generate a second digital signal and/or a third digital signal. An N-bit DAC generates the DAC source current based on the second digital signal, and an M-bit DAC generates the DAC sink current based on the third digital signal. The DAC source current and/or the DAC sink current tracks the photo-diode current.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 1, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11658804
    Abstract: Techniques for updating blockchains using a proof of work determined serially include receiving a block of data for inclusion in a new block of a blockchain; deterministically determining an initial nonce, hashing a combination of the block of data and the initial nonce to create a hashed value; iteratively deterministically determining an updated nonce based on a combination of the hashed value and updating the hashed value by hashing the updated nonce until the updated hashed value satisfies a proof of work criteria; creating the new block based on the block of data, the initial nonce, and the updated hashed value that satisfies the proof of work criteria; and having the new block stored in the blockchain.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 23, 2023
    Assignee: MYDREAM INTERACTIVE, INC.
    Inventors: Andrew Jonathan Leker, Matthew Drew Birder, Allison Phuong Huynh, Mark Thomas Wallace
  • Publication number: 20230155426
    Abstract: A device operative to transfer power and communicate wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal including whether a communication signal is transmitted from another device and generates a digital signal representative thereof.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh
  • Patent number: 11646746
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: May 9, 2023
    Assignee: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Patent number: 11646745
    Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100 s of kHz (e.g., 200-300 kHz), or even higher.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: May 9, 2023
    Assignee: SIGMASENSE, LLC.
    Inventor: Phuong Huynh