Patents by Inventor Pierre Gibart

Pierre Gibart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8283239
    Abstract: High quality free standing GaN is obtained using a new modification of the Epitaxial Lateral Overgrowth technology in which 3D islands or features are created only by tuning the growth parameters. Smoothing these islands (2D growth) is achieved thereafter by setting growth conditions producing enhanced lateral growth. The repetition of 3D-2D growth results in multiple bending of the threading dislocations thus producing thick layers or free standing GaN with threading dislocation density below 106 cm?2.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 9, 2012
    Assignee: Saint-Gobain Cristaux & Detecteurs
    Inventors: Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart, Therese Gibart, legal representative
  • Patent number: 8030101
    Abstract: A method of manufacturing a low defect density GaN material comprising at least two steps of growing epitaxial layers of GaN with differences in growing conditions, (a.) a first step of growing an epitaxial layer GaN on an epitaxially competent layer under first growing conditions selected to induce island features formation, followed by (b.) a second step of growing an epitaxial layer of GaN under second growing conditions selected to enhance lateral growth until coalescence.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: October 4, 2011
    Assignee: Saint-Gobain Cristaux et Detecteurs
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20100001289
    Abstract: A method of manufacturing a low defect density GaN material comprising at least two steps of growing epitaxial layers of GaN with differences in growing conditions, (a.) a first step of growing an epitaxial layer GaN on an epitaxially competent layer under first growing conditions selected to induce island features formation, followed by (b.) a second step of growing an epitaxial layer of GaN under second growing conditions selected to enhance lateral growth until coalescence.
    Type: Application
    Filed: May 18, 2009
    Publication date: January 7, 2010
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20090278136
    Abstract: High quality free standing GaN is obtained using a new modification of the Epitaxial Lateral Overgrowth technology in which 3D islands or features are created only by tuning the growth parameters. Smoothing these islands (2D growth) is achieved thereafter by setting growth conditions producing enhanced lateral growth. The repetition of 3D-2D growth results in multiple bending of the threading dislocations thus producing thick layers or free standing GaN with threading dislocation density below 106 cm?2.
    Type: Application
    Filed: December 15, 2006
    Publication date: November 12, 2009
    Inventors: Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Patent number: 7560296
    Abstract: A method of manufacturing a low defect density GaN material comprising at least two step of growing epitaxial layers of GaN with differences in growing conditions, (a.) a first step of growing an epitaxial layer GaN on an epitaxially compentent layer under first growing conditions selected to induce island features formation, followed by (b.) a second step of growing an epitaxial layer of GaN under second growing conditions selected to enhance lateral growth until coalescence.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: July 14, 2009
    Assignee: Lumilog
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Patent number: 7455729
    Abstract: The invention concerns a method for preparing gallium nitride films by vapour-phase epitaxy with low defect densities. The invention concerns a method for producing a gallium nitride (GaN) film from a substrate by vapour-phase epitaxy deposition of gallium nitride. The invention is characterized in that the gallium nitride deposition comprises at least one step of vapour-phase epitaxial lateral overgrowth, in that at least one of said epitaxial lateral overgrowth steps is preceded by etching openings either in a dielectric mask previously deposited, or directly into the substrate, and in that it consists in introducing a dissymmetry in the environment of dislocations during one of the epitaxial lateral overgrowth steps so as to produce a maximum number of curves in the dislocations, the curved dislocations not emerging at the surface of the resulting gallium nitride layer. The invention also concerns the optoelectronic and electronic components produced from said gallium nitride films.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: November 25, 2008
    Assignee: Lumilog
    Inventors: Bernard Beaumont, Pierre Gibart, Jean-Pierre Faurie
  • Patent number: 7445673
    Abstract: Gallium nitride substrates are grown by epitaxial lateral overgrowth using multiple steps. On a masked substrate having openings areas, selective growth produces first triangular stripes in which most of the threading dislocations are bent at 90°. In a second step, growth conditions are changed to increase the lateral growth rate and produce a flat (0001) surface. At this stage the density of dislocations on the surface is <5×107 cm 2. Dislocations are primarily located at the coalescence region between two laterally grown facets pinching off together. To further decrease the dislocation density a second masking step is achieved, with the openings exactly located above the first ones. Threading dislocations (TDs) of the coalescence region do not propagate in the top layer. Therefore the density of dislocations is lowered below <1×107 cm lover the entire surface.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: November 4, 2008
    Assignee: Lumilog
    Inventors: Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20070072320
    Abstract: A method of manufacturing a low defect density GaN material comprising at least two step of growing epitaxial layers of GaN with differences in growing conditions, (a.) a first step of growing an epitaxial layer GaN on an epitaxially compentent layer under first growing conditions selected to induce island features formation, followed by (b.) a second step of growing an epitaxial layer of GaN under second growing conditions selected to enhance lateral growth until coalescence.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 29, 2007
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20060266281
    Abstract: Gallium nitride substrates are grown by epitaxial lateral overgrowth using multiple steps. On a masked substrate having openings areas, selective growth produces first triangular stripes in which most of the threading dislocations are bent at 90°. In a second step, growth conditions are changed to increase the lateral growth rate and produce a flat (0001) surface. At this stage the density of dislocations on the surface is <5×107 cm 2. Dislocations are primarily located at the coalescence region between two laterally grown facets pinching off together. To further decrease the dislocation density a second masking step is achieved, with the openings exactly located above the first ones. Threading dislocations (TDs) of the coalescence region do not propagate in the top layer. Therefore the density of dislocations is lowered below <1×107 cm lover the entire surface.
    Type: Application
    Filed: May 18, 2004
    Publication date: November 30, 2006
    Inventors: Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Patent number: 7118929
    Abstract: The present invention relates to a process for producing an epitaxial layer of gallium nitride (GaN) as well as to the epitaxial layers of gallium nitride (GaN) which can be obtained by said process. Such a process makes it possible to obtain gallium nitride layers of excellent quality by (i) forming on a surface of a substrate, a film of a silicon nitride of between 5 to 20 monolayers, functioning as a micro-mask, (ii) depositing a continuous gallium nitride layer on the silicon nitride film at a temperature ranging from 400 to 600° C., (iii) after depositing the gallium nitride layer, annealing the gallium nitride layer at a temperature ranging from 950 to 1120° C. and (iv) performing an epitaxial regrowth with gallium nitride at the end of a spontaneous in situ formation of islands of gallium nitride.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 10, 2006
    Assignee: Lumilog
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20060099781
    Abstract: The invention concerns a method for preparing gallium nitride films by vapour-phase epitaxy with low defect densities. The invention concerns a method for producing a gallium nitride (GaN) film from a substrate by vapour-phase epitaxy deposition of gallium nitride. The invention is characterized in that the gallium nitride deposition comprises at least one step of vapour-phase epitaxial lateral overgrowth, in that at least one of said epitaxial lateral overgrowth steps is preceded by etching openings either in a dielectric mask previously deposited, or directly into the substrate, and in that it consists in introducing a dissymmetry in the environment of dislocations during one of the epitaxial lateral overgrowth steps so as to produce a maximum number of curves in the dislocations, the curved dislocations not emerging at the surface of the resulting gallium nitride layer. The invention also concerns the optoelectronic and electronic components produced from said gallium nitride films.
    Type: Application
    Filed: July 24, 2003
    Publication date: May 11, 2006
    Inventors: Bernard Beaumont, Pierre Gibart, Jean-Pierre Faurie
  • Patent number: 6802902
    Abstract: A process for producing an epitaxial layer of gallium nitride (GaN). A film of a dielectric whose thickness is about one monolayer is formed on a surface of a substrate. A continuous gallium nitride layer is then deposited on the dielectric film at a temperature sufficiently low to suppress island formation of the gallium nitride. The deposited gallium nitride layer is annealed at a temperature sufficiently high to promote island formation of the gallium nitride. An epitaxial regrowth with gallium nitride at the end of a spontaneous in situ formation of islands of gallium nitride then takes place. This method makes it possible to avoid having to use ex situ etching of masks by photolitographiy or chemical ethching techniques.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 12, 2004
    Assignee: Lumilog
    Inventors: Bernard Beaumont, Pierre Gibart, Jean-Claude Guillaume, Gilles Nataf, Michel Vaille, Soufien Haffouz
  • Publication number: 20040137732
    Abstract: The present invention relates to a process for producing an epitaxial layer of gallium nitride (GaN) as well as to the epitaxial layers of gallium nitride (GaN) which can be obtained by said process. Such a process makes it possible to obtain gallium nitride layers of excellent quality by (i) forming on a surface of a substrate, a film of a silicon nitride of between 5 to 20 monolayers, functioning as a micro-mask, (ii) depositing a continuous gallium nitride layer on the silicon nitride film at a temperature ranging from 400 to 600° C., (iii) after depositing the gallium nitride layer, annealing the gallium nitride layer at a temperature ranging from 950 to 1120° C. and (iv) performing an epitaxial regrowth with gallium nitride at the end of a spontaneous in situ formation of islands of gallium nitride.
    Type: Application
    Filed: October 28, 2003
    Publication date: July 15, 2004
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Publication number: 20020152952
    Abstract: The invention concerns a method for producing a gallium nitride (GaN) epitaxial layer characterised in that it consists in depositing on a substrate a dielectric layer acting as a mask and depositing on the masked gallium nitride, by epitaxial deposit, so as to induce the deposit of gallium nitride patterns and the anisotropic lateral growth of said patterns, the lateral growth being pursued until the different patterns coalesce. The deposit of the gallium nitride patterns can be carried out ex-situ by dielectric etching on in-situ by treating the substrate for coating it with a dielectric film whereof the thickness is of the order of one angstrom. The invention also concerns the gallium nitride layers obtained by said method.
    Type: Application
    Filed: September 21, 2001
    Publication date: October 24, 2002
    Inventors: Bernard Beaumont, Pierre Gibart, Jean-Claude Guillaume, Gilles Nataf, Michel Vaille, Soufien Haffouz
  • Patent number: 6325850
    Abstract: The invention concerns a method for producing a gallium nitride (GaN) epitaxial layer characterised in that it consists in depositing on a substrate a dielectric layer acting as a mask and depositing on the masked gallium nitride, by epitaxial deposit, so as to induce the deposit of gallium nitride patterns and the anisotropic lateral growth of said patterns, the lateral growth being pursued until the different patterns coalesce. The deposit of the gallium nitride patterns can be carried out ex-situ by dielectric etching or in-situ by treating the substrate for coating it with a dielectric film whereof the thickness is of the order of one angstrom. The invention also concerns the gallium nitride layers obtained by said method.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: December 4, 2001
    Assignee: Centre National de la Recherché Scientifique (CNRS)
    Inventors: Bernard Beaumont, Pierre Gibart, Jean-Claude Guillaume, Gilles Nataf, Michel Vaille, Soufien Haffouz