Patents by Inventor Pierre Mertz
Pierre Mertz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250141542Abstract: A disclosed optical system comprises a repeater disposed between a first span and a second span of an optical cable and a node receiving an optical signal from the first span and transmitting a reflection to the first span. The node comprises a transmitter coupled to the first span to transmit the optical signal, transmit pulses having an RF modulated tone, and provide a local reflection; a receiver to receive the local reflection and the pulse reflection and passing a filtered spectrum; and a DSP to: determine a first RF phase of the local reflection and a second RF phase of the pulse reflection; determine a second RF phase; determine a first span seismic pressure based on the first RF phase and determine a second span seismic pressure based on the second RF phase.Type: ApplicationFiled: October 30, 2024Publication date: May 1, 2025Inventors: Pierre Mertz, Siddharth Varughese
-
Publication number: 20230085546Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for applying non-linearity to digital subcarriers. A receiver includes a detector circuit operable to receive a first optical signal over an optical link, the first optical signal carrying first data. The receiver includes a carrier recovery estimation circuit operable to generate compensated data by correcting errors in the first data. The receiver includes a non-linear coefficient estimation circuit operable to (i) receive the compensated data, and (ii) estimate one or more non-linear coefficients, wherein information indicative of the estimated non-linear coefficients is transmitted over an optical network, such that a second optical signal is transmitted based, at least in part, on the estimated non-linear coefficients, the second optical signal being received by the receiver.Type: ApplicationFiled: September 14, 2022Publication date: March 16, 2023Inventors: Mohamed Osman, Demin Yao, Domanic Lavery, Han Henry Sun, Pierre Mertz
-
Publication number: 20220303014Abstract: A transceiver is herein described. The transceiver comprises an optical source providing an optical signal, a modulator receiving the optical signal and configured to encode data into the optical signal, a transmitter module to receive data to be encoded into the optical signal and having at least one drive circuit supplying driver signals to the modulator to cause the modulator to encode data into a carrier having a frequency band and a tone signal outside of the frequency band into the optical signal, a narrowband filter operable to receive a portion of the optical signal via an optical loopback, the optical signal having the encoded data and a first tone reflection of the tone signal at a first instant of time and to pass the first tone reflection, a polarimeter operable to receive the first tone reflection and determine a first tone polarization of the first tone reflection.Type: ApplicationFiled: March 21, 2022Publication date: September 22, 2022Inventors: Pierre Mertz, Han Hennry Sun, Robert Maher
-
Patent number: 11323175Abstract: Described herein is an apparatus including a continuous wave idler and an optical coupler that provide an optical signal having a power greater than optical channels carrying data, and positioned at a cross-over point between two spectral bands, with each band encompassing multiple optical channels.Type: GrantFiled: December 17, 2020Date of Patent: May 3, 2022Assignee: Infinera CorporationInventors: Sumudu Geethika Edirisinghe, Pierre Mertz, Steven William Beacall
-
Publication number: 20220131605Abstract: Described herein is an apparatus including a continuous wave idler and an optical coupler that provide an optical signal having a power greater than optical channels carrying data, and positioned at a cross-over point between two spectral bands, with each band encompassing multiple optical channels.Type: ApplicationFiled: December 17, 2020Publication date: April 28, 2022Inventors: Sumudu Geethika Edirisinghe, Pierre Mertz, Steven William Beacall
-
Patent number: 10298317Abstract: A method is described in which a loss of spectrum in an optical signal having an optical signal spectrum is detected. The optical signal is transmitted from a first node to a second node. In response to detecting the loss of spectrum in the optical signal, at least one idler carrier without data imposed is supplied into the optical signal spectrum transmitted from the first node to the second node, the optical signal spectrum encompassing a frequency band including a plurality of optical channels, the idler carrier being amplified stimulated emission light having a frequency corresponding to a first optical channel of the plurality of optical channels.Type: GrantFiled: December 21, 2017Date of Patent: May 21, 2019Assignee: Infinera CorporationInventors: Pierre Mertz, Omer Faruk Yilmaz
-
Publication number: 20180269964Abstract: A method is described in which a loss of spectrum in an optical signal having an optical signal spectrum is detected. The optical signal is transmitted from a first node to a second node. In response to detecting the loss of spectrum in the optical signal, at least one idler carrier without data imposed is supplied into the optical signal spectrum transmitted from the first node to the second node, the optical signal spectrum encompassing a frequency band including a plurality of optical channels, the idler carrier being amplified stimulated emission light having a frequency corresponding to a first optical channel of the plurality of optical channels.Type: ApplicationFiled: December 21, 2017Publication date: September 20, 2018Inventors: Pierre Mertz, Omer Faruk Yilmaz
-
Patent number: 9246597Abstract: The present disclosure allows for optical link capacity to be optimized based on transmission parameters, such as amplifier gain, link loss, optical signal-to-noise ratio. For example, optical signals at wavelengths that are susceptible to impairments, such as non-linear effects, or that are not adequately amplified by an optical amplifier, may be modulated in accordance with lower rate/less spectrally efficient modulation formats (“low rate formats”) that are more noise tolerant. On the other hand, those optical signals at wavelengths that are less susceptible to or do not incur such impairments may be modulated in accordance with highly spectrally efficient/higher rate modulation formats (“high rate formats”) that are more noise sensitive. Accordingly, a maximum or optimized capacity may be realized through appropriately choosing, for each channel, a particular modulation format and channel spacing. Such optimized capacity can be readily obtained with adaptive driver circuits.Type: GrantFiled: June 29, 2010Date of Patent: January 26, 2016Assignee: Infinera CorporationInventors: Pierre Mertz, Kuang-Tsan Wu
-
Patent number: 9166689Abstract: A system receives four-bit symbols that correspond to traffic associated with a three-bit phase modulation scheme and are encoded based on a four-bit phase modulation scheme. The system determines values with which to perform equalization that enable the four-bit symbols to be restored to a condition that existed prior to being transmitted to the system. The system performs, using the values, equalization on a four-bit symbol that includes at least a first pair of bits associated with a first polarization, and performs, after completing the equalization, another equalization on another four-bit symbol that includes at least a second pair of bits associated with a second polarization. The system identifies a three-bit symbol, of a set of three-bit symbols associated with the three-bit phase modulation scheme, based on the equalized first pair of bits and the equalized second pair of bits, generates the three-bit symbol, and outputs the three-bit symbol.Type: GrantFiled: June 28, 2012Date of Patent: October 20, 2015Assignee: Infinera CorporationInventors: Han Henry Sun, Kuang-Tsan Wu, Pierre Mertz
-
Patent number: 9166696Abstract: An apparatus including a photodiode, a low pass filter, an analog-to-digital converter, an interpolation circuit and a digital signal processor is disclosed. The photodiode receives a portion of a plurality of optical signals, each of which is modulated in accordance with a corresponding one of a plurality of data streams, and each having a corresponding one of a plurality of wavelengths. The photodiode supplies an electrical output. The low-pass filter supplies a filtered output in response to the electrical output. The analog-to-digital converter is configured to sample the filtered output at a first sampling rate to generate a plurality of first data samples. The interpolation circuit is configured to receive the plurality of first data samples and supply a plurality of second data samples at a second sampling rate less the first sampling rate. The digital signal processor circuit is configured to receive the plurality of second data samples.Type: GrantFiled: August 28, 2014Date of Patent: October 20, 2015Assignee: Infinera CorporationInventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Patent number: 9154258Abstract: Systems and methods are disclosed including a subsea link idler apparatus comprising at least one data laser generating a first laser beam as a data signal, having a first frequency within a first data channel bandwidth slot; a first continuous wave laser generating a second laser beam with a first polarization and a second frequency being within a second data channel bandwidth slot; a second continuous wave laser generating a third laser beam with a second polarization different from the first polarization and a third frequency being offset from the second frequency and being within the second data channel bandwidth slot; a polarization beam combiner positioned in paths of the second and third laser beams combining the second and third laser beams into an idler signal; and a transmitter receiving and transmitting the data signal and idler signal.Type: GrantFiled: March 31, 2014Date of Patent: October 6, 2015Assignee: Infinera CorporationInventors: Pierre Mertz, Hai Xu
-
Publication number: 20150280855Abstract: Systems and methods are disclosed including a subsea link idler apparatus comprising at least one data laser generating a first laser beam as a data signal, having a first frequency within a first data channel bandwidth slot; a first continuous wave laser generating a second laser beam with a first polarization and a second frequency being within a second data channel bandwidth slot; a second continuous wave laser generating a third laser beam with a second polarization different from the first polarization and a third frequency being offset from the second frequency and being within the second data channel bandwidth slot; a polarization beam combiner positioned in paths of the second and third laser beams combining the second and third laser beams into an idler signal; and a transmitter receiving and transmitting the data signal and idler signal.Type: ApplicationFiled: March 31, 2014Publication date: October 1, 2015Inventors: Pierre Mertz, Hai Xu
-
Patent number: 9124371Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced wavelengths. The plurality of periodically spaced wavelengths or carriers are grouped together with minimal carrier spacing, to form a superchannel. The carrier spacing between adjacent carriers is determined by detecting a beat frequency of a combined optical signal that includes the outputs of two adjacent optical sources. The beat frequency corresponds to a frequency difference between the outputs of the adjacent carriers. This frequency difference should correspond to a desired carrier spacing between each of the plurality of carriers.Type: GrantFiled: April 1, 2011Date of Patent: September 1, 2015Assignee: Infinera CorporationInventors: John D. McNicol, Michael Francis Van Leeuwen, Pierre Mertz, Hai Xu
-
Publication number: 20140369698Abstract: An apparatus including a photodiode, a low pass filter, an analog-to-digital converter, an interpolation circuit and a digital signal processor is disclosed. The photodiode receives a portion of a plurality of optical signals, each of which is modulated in accordance with a corresponding one of a plurality of data streams, and each having a corresponding one of a plurality of wavelengths. The photodiode supplies an electrical output. The low-pass filter supplies a filtered output in response to the electrical output. The analog-to-digital converter is configured to sample the filtered output at a first sampling rate to generate a plurality of first data samples. The interpolation circuit is configured to receive the plurality of first data samples and supply a plurality of second data samples at a second sampling rate less the first sampling rate. The digital signal processor circuit is configured to receive the plurality of second data samples.Type: ApplicationFiled: August 28, 2014Publication date: December 18, 2014Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Patent number: 8831439Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.Type: GrantFiled: October 5, 2010Date of Patent: September 9, 2014Assignee: Infinera CorporationInventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Patent number: 8768177Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.Type: GrantFiled: October 5, 2010Date of Patent: July 1, 2014Assignee: Infinera CorporationInventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Patent number: 8655190Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.Type: GrantFiled: October 5, 2010Date of Patent: February 18, 2014Assignee: Infinera CorporationInventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Patent number: 8639118Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.Type: GrantFiled: October 5, 2010Date of Patent: January 28, 2014Assignee: Infinera CorporationInventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
-
Publication number: 20140003824Abstract: A system receives four-bit symbols that correspond to traffic associated with a three-bit phase modulation scheme and are encoded based on a four-bit phase modulation scheme. The system determines values with which to perform equalization that enable the four-bit symbols to be restored to a condition that existed prior to being transmitted to the system. The system performs, using the values, equalization on a four-bit symbol that includes at least a first pair of bits associated with a first polarization, and performs, after completing the equalization, another equalization on another four-bit symbol that includes at least a second pair of bits associated with a second polarization. The system identifies a three-bit symbol, of a set of three-bit symbols associated with the three-bit phase modulation scheme, based on the equalized first pair of bits and the equalized second pair of bits, generates the three-bit symbol, and outputs the three-bit symbol.Type: ApplicationFiled: June 28, 2012Publication date: January 2, 2014Applicant: Infinera CorporationInventors: Han Henry SUN, Kuang-Tsan Wu, Pierre Mertz
-
Publication number: 20140003815Abstract: A photonic integrated circuit device comprises a receiver integrated in a substrate and having an optical input line, a first, a second, a third, and a fourth electrical output line, and a transmitter having a first input line in electrical communication with the first electrical output line, a second input line in electrical communication with the second, a third input line in electrical communication with the third, and a fourth input line in electrical communication with the fourth electrical output line. The receiver may receive and convert an input TM signal, and an input TE signal into a first electrical signal outputted to the first, a second electrical signal outputted to the second, a third electrical signal outputted to the third, and a fourth electrical signal outputted to the fourth electrical output line. The transmitter may receive the electrical signals and modulate and output a phase conjugated output light signal.Type: ApplicationFiled: June 29, 2012Publication date: January 2, 2014Inventor: Pierre Mertz