Patents by Inventor Pierre Olivier Montagne

Pierre Olivier Montagne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10907547
    Abstract: A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: February 2, 2021
    Assignee: General Electric Company
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, Jr., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Publication number: 20190040800
    Abstract: A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.
    Type: Application
    Filed: July 9, 2018
    Publication date: February 7, 2019
    Inventors: Pierre Olivier MONTAGNE, Sundar AMANCHERLA, Krishnamurthy ANAND, David Terry TRAYHAN, JR., Matthieu Paul Frederic VIERLING, Maher ABOUJAIB, Abdurrahman Abdallah KHALIDI
  • Patent number: 10184091
    Abstract: A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, Jr., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Publication number: 20170158978
    Abstract: A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Inventors: Pierre Olivier Montagne, Sundar Amancherla, Krishnamurthy Anand, David Terry Trayhan, JR., Matthieu Paul Frederic Vierling, Maher Aboujaib, Abdurrahman Abdallah Khalidi
  • Publication number: 20160178203
    Abstract: A gas turbomachine includes a compressor portion, a turbine portion operatively connected to the compressor portion, and a combustor assembly fluidically connected to the turbine portion. The combustor assembly includes at least one nozzle including at least one fuel gas injector portion and at least one water injector portion. A fuel system is fluidically connected to the at least one nozzle. The fuel system includes at least one fuel gas manifold, a water injector purge manifold and a water injector manifold. The at least one fuel gas manifold is selectively fluidically connectable to the water injector portion of the nozzle through the water injector purge manifold.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 23, 2016
    Inventors: Pierre Olivier Montagne, William James Lawson, John Joseph Lipinski, Rajarshi Saha, Sudhakar Todeti