Patents by Inventor Pierre Sarazin

Pierre Sarazin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160200891
    Abstract: There is provided a method for preparing a porous gel. The method comprises using a porous polymer template. The porous gel according to the invention has a porosity that is continuous throughout the whole volume of the gel and that is tunable in terms of pore size distribution and average pore diameter. The porous gel can be used in various application.
    Type: Application
    Filed: August 22, 2014
    Publication date: July 14, 2016
    Inventors: Nick Virgilio, Pierre Sarazin, Anne-Laure Esquirol
  • Publication number: 20120283364
    Abstract: New polymer blends are provided. These blends comprise a first polymer, a second polymer and thermoplastic starch, the thermoplastic starch being at least partially encapsulated in the second polymer. The polymer blends may be shaped into articles, for example by extrusion or injection molding.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Applicant: CERESTECH, INC.
    Inventors: PIERRE SARAZIN, BASIL D. FAVIS
  • Patent number: 8257624
    Abstract: A method for making a porous material, includes melt-blending two or more non-miscible polymers to obtain a co-continuous melt, solidifying the melt to obtain a solid mass consisting of two co-continuous polymer phases, and selectively extracting one of the co-continuous phases thereby creating within the solid mass an essentially continuous pore network having an internal surface. The method further includes replicating the internal surface of the pore network within the solid mass by coating the internal surface with successive layers of materials, and selectively extracting the solid mass without extracting the layers of materials, to thereby yield the product porous material, formed of the layers of materials. The material has a void fraction higher than about 75%, and mainly having essentially fully interconnected sheath-like non-spherical pores and essentially non-fibrous walls.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: September 4, 2012
    Inventors: Basil D. Favis, Pierre Sarazin, Xavier Roy
  • Publication number: 20120184672
    Abstract: There is provided a polylactic acid resin composition having elevated impact resistance and/or elevated heat deflection temperature, the composition comprising polylactic acid as a major phase. There is also provided an article made of this composition and a masterbatch for producing this composition through dilution with polylactic acid. Finally, there is also provided a process for making such a composition, the process comprising the step of compounding together the following ingredients: polylactic acid, a mineral filler, a chain mobility additive, optionally an impact modifier, and optionally a chain extender, thereby producing the resin composition.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 19, 2012
    Applicants: TEKNOR APEX COMPANY, CERESTECH, INC.
    Inventors: DANUT RISCANU, PIERRE SARAZIN
  • Patent number: 8007823
    Abstract: The present invention relates to a highly controlled method of preparation of a microporous biodegradable polymeric article. Firstly, at least one biodegradable polymer A, one polymer B, biodegradable or not, partially or totally immiscible with A, and a compatibilizer C for A and B are selected. Secondly, the selected polymers are melt-blended, thereby preparing a polymer blend, wherein said polymers A and B have an essentially continuous morphology. Thirdly, after cooling, polymer B and compatibilizer C are selectively extracted from the polymer blend by dissolution in a solvent that is a non-solvent of polymer A. The resulting polymeric article has an essentially continuous porosity with a void volume between 10 and 90% and a unimodal diameter distribution set to a predefined unimodal peak location. It can be used in tissue engineering, for controlled release applications or as an implantable medical device.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: August 30, 2011
    Assignee: Corporation de l'Ecole Polytechnique de Montreal
    Inventors: Basil D. Favis, Pierre Sarazin, Jianming Li, Zhenhua Yuan
  • Publication number: 20090087641
    Abstract: A method for making a porous material, includes melt-blending two or more non-miscible polymers to obtain a co-continuous melt, solidifying the melt to obtain a solid mass consisting of two co-continuous polymer phases, and selectively extracting one of the co-continuous phases thereby creating within the solid mass an essentially continuous pore network having an internal surface. The method further includes replicating the internal surface of the pore network within the solid mass by coating the internal surface with successive layers of materials, and selectively extracting the solid mass without extracting the layers of materials, to thereby yield the product porous material, formed of the layers of materials. The material has a void fraction higher than about 75%, and mainly having essentially fully interconnected sheath-like non-spherical pores and essentially non-fibrous walls.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 2, 2009
    Inventors: Basil D. Favis, Pierre Sarazin, Xavier Roy
  • Publication number: 20070116737
    Abstract: The present invention relates to a highly controlled method of preparation of a microporous biodegradable polymeric article. Firstly, at least one biodegradable polymer A, one polymer B, biodegradable or not, partially or totally immiscible with A, and a compatibilizer C for A and B are selected. Secondly, the selected polymers are melt-blended, thereby preparing a polymer blend; wherein said polymers A and B have an essentially continuous morphology. Thirdly, after cooling, polymer B and compatibilizer C are selectively extracted from the polymer blend by dissolution in a solvent that is a non-solvent of polymer A. The resulting polymeric article has an essentially continuous porosity with a void volume between 10 and 90% and a unimodal diameter distribution set to a predefined unimodal peak location. It can be used in tissue engineering, for controlled release applications or as an implantable medical device.
    Type: Application
    Filed: April 2, 2004
    Publication date: May 24, 2007
    Inventors: Basil Favis, Pierre Sarazin, Jiangming Li, Zhenhua Yuan