Patents by Inventor Pierre St. Hilaire

Pierre St. Hilaire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085705
    Abstract: An example a head-mounted display device includes a light projector and an eyepiece. The eyepiece is arranged to receive light from the light projector and direct the light to a user during use of the wearable display system. The eyepiece includes a waveguide having an edge positioned to receive light from the display light source module and couple the light into the waveguide. The waveguide includes a first surface and a second surface opposite the first surface. The waveguide includes several different regions, each having different grating structures configured to diffract light according to different sets of grating vectors.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Dianmin LIN, Pierre ST. HILAIRE
  • Patent number: 11899216
    Abstract: An example a head-mounted display device includes a light projector and an eyepiece. The eyepiece is arranged to receive light from the light projector and direct the light to a user during use of the wearable display system. The eyepiece includes a waveguide having an edge positioned to receive light from the display light source module and couple the light into the waveguide. The waveguide includes a first surface and a second surface opposite the first surface. The waveguide includes several different regions, each having different grating structures configured to diffract light according to different sets of grating vectors.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: February 13, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Pierre St. Hilaire
  • Patent number: 11885969
    Abstract: An example head-mounted display device includes a plurality of optical elements in optical communication. The optical elements are configured to project an image in a field of view of a user wearing the head-mounted display device. A first optical element is configured to receive light from a second optical element. The first optical element defines a grating at along a periphery of the first optical element. The grating includes a plurality of protrusions extending from a base portion of the first optical element. The protrusions include a first material having a first optical dispersion profile for visible wavelengths of light. The grating also includes a second material disposed between at least some of the plurality of protrusions along the base portion of the first optical element. The second material has a second optical dispersion profile for visible wavelengths of light.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Pierre St. Hilaire, Mohammadreza Khorasaninejad, Dianmin Lin
  • Publication number: 20230418074
    Abstract: An optical system comprises an optically transmissive substrate comprising a multilevel metasurface which comprises a grating comprising a plurality of multilevel unit cells. Each unit cell comprises, on a lowermost level, a laterally-elongated first lowermost level nanobeam having a first width and a laterally-elongated second lowermost level nanobeam having a second width larger than the first width. Each unit cell further comprises, on an uppermost level, a laterally-elongated first uppermost level nanobeam above the first lowermost level nanobeam and a laterally-elongated second uppermost level nanobeam above the second lowermost level nanobeam.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20230417980
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20230403378
    Abstract: This disclosure relates to the use of variable-pitch light-emitting devices for display applications, including for displays in augmented reality, virtual reality, and mixed reality environments. In particular, it relates to small (e.g., micron-size) light emitting devices (e.g., micro-LEDs) of variable pitch to provide the advantages, e.g., of compactness, manufacturability, color rendition, as well as computational and power savings. Systems and methods for emitting multiple lights by multiple panels where a pitch of one panel is different than pitch(es) of other panels are disclosed. Each panel may comprise a respective array of light emitters. The multiple lights may be combined by a combiner.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 14, 2023
    Inventors: Pierre ST. HILAIRE, Evgeni Poliakov, Sundeep Kumar Jolly
  • Publication number: 20230384499
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Publication number: 20230341597
    Abstract: An eyepiece waveguide for an augmented reality display system. The eyepiece waveguide can include an optically transmissive substrate with an input coupling grating (ICG) region. The ICG region can receive a beam of light and couple the beam into the substrate in a guided propagation mode. The eyepiece waveguide can also include a combined pupil expander-extractor (CPE) grating region that receives the beam of light from the ICG region and alters the propagation direction of the beam with a first interaction and out-couples the beam with a second interaction. The diffractive features of the CPE grating region can be arranged in rows and columns of alternating higher and lower quadrilateral surfaces or the diffractive features can comprise diamond shaped raised ridges. The eyepiece waveguide can also include one or more recycler grating regions.
    Type: Application
    Filed: September 14, 2021
    Publication date: October 26, 2023
    Inventors: Victor Kai LIU, Samarth BHARGAVA, Brandon Michael-James BORN, Dianmin LIN, Pierre ST. HILAIRE, Vikramjit SINGH, Kang LUO
  • Patent number: 11796818
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: October 24, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11789273
    Abstract: A head worn imaging system includes a light source configured to generate a light beam. The system also includes a light guiding optical element having a thickness between 0.1 and 1.5 mm and configured to propagate at least a portion of the light beam by total internal reflection. The system further includes an entry portion and an exit portion of the light guiding optical element configured to selectively allow light addressing the exit portion to exit the light guiding optical element based on the angle of incidence of the light, the radius of curvature of the light and/or the wavelength of the light.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventor: Pierre St. Hilaire
  • Patent number: 11789198
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11789189
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Patent number: 11778148
    Abstract: This disclosure relates to the use of variable-pitch light-emitting devices for display applications, including for displays in augmented reality, virtual reality, and mixed reality environments. In particular, it relates to small (e.g., micron-size) light emitting devices (e.g., micro-LEDs) of variable pitch to provide the advantages, e.g., of compactness, manufacturability, color rendition, as well as computational and power savings. Systems and methods for emitting multiple lights by multiple panels where a pitch of one panel is different than pitch(es) of other panels are disclosed. Each panel may comprise a respective array of light emitters. The multiple lights may be combined by a combiner.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: October 3, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Pierre St. Hilaire, Evgeni Poliakov, Sundeep Kumar Jolly
  • Patent number: 11762213
    Abstract: An imaging system includes a diffusing element configured to couple portions of a light beam back into a laser diode. The system includes a diode laser driven into a chaotic regime by a combination of a diffuser and a modulated drive current such that it emits light across a frequency spectrum having an envelope between 3 and 10 nanometers wide. The system further includes a diffusing element at least 0.1 mm to 0.5 mm away from the diode laser to couple portions of the light beam back into the laser diode. Another embodiment is directed to using the diffusing element to illuminate a flat panel display or a spatial light modulator.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: September 19, 2023
    Assignee: Magic Leap, Inc.
    Inventor: Pierre St. Hilaire
  • Publication number: 20230280594
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Publication number: 20230273450
    Abstract: Antireflection coatings for metasurfaces are described herein. In some embodiments, the metasurface may include a substrate, a plurality of nanostructures thereon, and an antireflection coating disposed over the nanostructures. The antireflection coating may be a transparent polymer, for example a photoresist layer, and may have a refractive index lower than the refractive index of the nanostructures and higher than the refractive index of the overlying medium (e.g., air). Advantageously, the antireflection coatings may reduce or eliminate ghost images in an augmented reality display in which the metasurface is incorporated.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11733443
    Abstract: Methods of manufacturing a liquid crystal device including depositing a layer of liquid crystal material on a substrate and imprinting a pattern on the layer of liquid crystal material using an imprint template are disclosed. The liquid crystal material can be jet deposited. The imprint template can include surface relief features, Pancharatnam-Berry Phase Effect (PBPE) structures or diffractive structures. The liquid crystal device manufactured by the methods described herein can be used to manipulate light, such as for beam steering, wavefront shaping, separating wavelengths and/or polarizations, and combining different wavelengths and/or polarizations.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 22, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Patent number: 11686944
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 27, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Patent number: 11681153
    Abstract: Antireflection coatings for metasurfaces are described herein. In some embodiments, the metasurface may include a substrate, a plurality of nanostructures thereon, and an antireflection coating disposed over the nanostructures. The antireflection coating may be a transparent polymer, for example a photoresist layer, and may have a refractive index lower than the refractive index of the nanostructures and higher than the refractive index of the overlying medium (e.g., air). Advantageously, the antireflection coatings may reduce or eliminate ghost images in an augmented reality display in which the metasurface is incorporated.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: June 20, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Meili, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20230168425
    Abstract: Display devices include waveguides with metasurfaces as in-coupling and/or out-coupling optical elements. The metasurfaces may be formed on a surface of the waveguide and may include a plurality or an array of sub-wavelength-scale (e.g., nanometer-scale) protrusions. Individual protrusions may include horizontal and/or vertical layers of different materials which may have different refractive indices, allowing for enhanced manipulation of light redirecting properties of the metasurface. Some configurations and combinations of materials may advantageously allow for broadband metasurfaces. Manufacturing methods described herein provide for vertical and/or horizontal layers of different materials in a desired configuration or profile.
    Type: Application
    Filed: January 15, 2023
    Publication date: June 1, 2023
    Inventors: Mauro Melli, Mohammadreza Khorasaninejad, Christophe Peroz, Pierre St. Hilaire, Dianmin Lin