Patents by Inventor Pietari Tuomisto

Pietari Tuomisto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747621
    Abstract: Reflectors comprising thin film dichroic coatings are located on various components of a waveguide-based optical combiner in a see-through display of a head-mounted display (HMD) device to reduce color cross-coupling in holographic images and reflect forward-projected holographic image light back to a user's eye. The dichroic coatings implement narrowband reflectors for each of one or more colors of an RGB (red, green, blue) color model over the angular range associated with the field of view (FOV) of the virtual portion of the see-through display. Utilization of the dichroic coatings can improve virtual display uniformity and lessen sharp edge defects by reducing cross-coupling and may also improve light security by reducing the forward-projected holographic image light that escapes from the HMD device.
    Type: Grant
    Filed: November 7, 2020
    Date of Patent: September 5, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Tuomas Heikki Sakari Vallius, Pietari Tuomisto, Jani Kari Tapio Tervo
  • Publication number: 20220360047
    Abstract: A laser chip is described which comprises a plurality of gain areas. Each gain area comprises a ridge waveguide and a wavelength locking element, where the wavelength locking element in a gain area defines the output wavelength characteristics of visible light emitted from that gain area and adjacent gain areas comprise different wavelength locking elements.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Inventors: Pasi Petteri PIETILAE, Pietari TUOMISTO, Simo Kaarlo Tapani TAMMELA
  • Publication number: 20220146827
    Abstract: Reflectors comprising thin film dichroic coatings are located on various components of a waveguide-based optical combiner in a see-through display of a head-mounted display (HMD) device to reduce color cross-coupling in holographic images and reflect forward-projected holographic image light back to a user's eye. The dichroic coatings implement narrowband reflectors for each of one or more colors of an RGB (red, green, blue) color model over the angular range associated with the field of view (FOV) of the virtual portion of the see-through display. Utilization of the dichroic coatings can improve virtual display uniformity and lessen sharp edge defects by reducing cross-coupling and may also improve light security by reducing the forward-projected holographic image light that escapes from the HMD device.
    Type: Application
    Filed: November 7, 2020
    Publication date: May 12, 2022
    Inventors: Tuomas Heikki Sakari VALLIUS, Pietari TUOMISTO, Jani Kari Tapio TERVO
  • Patent number: 11175509
    Abstract: The description relate to devices, such as augmented reality and/or virtual reality devices that employ optical waveguides. On example includes a first optical waveguide configured to receive light at an incidence angle and a second optical waveguide positioned in a non-parallel relation to the first optical waveguide. The second optical waveguide can be configured to receive the light through the first optical waveguide at a first location at the incidence angle, transmit the light within the second optical waveguide, and output the light from a second location back toward the first optical waveguide at the incidence angle.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Simo Kaarlo Tammela, Ari Juhani Tervonen, Heikki Juhana Hyvarinen, Lasse Pekka Karvonen, Andreas Langner, Pietari Tuomisto
  • Publication number: 20210096371
    Abstract: The description relate to devices, such as augmented reality and/or virtual reality devices that employ optical waveguides. On example includes a first optical waveguide configured to receive light at an incidence angle and a second optical waveguide positioned in a non-parallel relation to the first optical waveguide. The second optical waveguide can be configured to receive the light through the first optical waveguide at a first location at the incidence angle, transmit the light within the second optical waveguide, and output the light from a second location back toward the first optical waveguide at the incidence angle.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Simo Kaarlo Tammela, Ari Juhani Tervonen, Heikki Juhana Hyvarinen, Lasse Pekka Karvonen, Andreas Langner, Pietari Tuomisto
  • Patent number: 10866422
    Abstract: MicroLED arrays offer a small form factor solution for the HMD image sources since they do not need a separate illumination optics. Features of the present disclosure implement a MicroLED display system that incorporate a plurality of monochrome projectors (e.g., three MicroLED projectors) to generate three monochrome images (e.g., red, blue, and green images) that are separately input into a single waveguide of the HMD and combined to form an image that is displayed to the user. By utilizing a single waveguide that includes a plurality of spatially separated input regions (e.g., a region for inputting blue light, a region for inputting red light, a region for inputting green light), the MicroLED display system of the present disclosure may reduce the form factor of the HMD device because of the reduced number of plates that may be required to combine the three monochrome images.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 15, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Pietari Tuomisto, William Cummings, Dmitry Reshidko, Tuomas Vallius, David Douglas Bohn
  • Publication number: 20200271932
    Abstract: MicroLED arrays offer a small form factor solution for the HMD image sources since they do not need a separate illumination optics. Features of the present disclosure implement a MicroLED display system that incorporate a plurality of monochrome projectors (e.g., three MicroLED projectors) to generate three monochrome images (e.g., red, blue, and green images) that are separately input into a single waveguide of the HMD and combined to form an image that is displayed to the user. By utilizing a single waveguide that includes a plurality of spatially separated input regions (e.g., a region for inputting blue light, a region for inputting red light, a region for inputting green light), the MicroLED display system of the present disclosure may reduce the form factor of the HMD device because of the reduced number of plates that may be required to combine the three monochrome images.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Inventors: Pietari TUOMISTO, William J. CUMMINGS, Dmitry RESHIDKO, Tuomas VALLIUS, David Douglas BOHN
  • Patent number: 10650785
    Abstract: MicroLED arrays offer a small form factor solution for the HMD image sources since they do not need a separate illumination optics. Features of the present disclosure implement a MicroLED display system that incorporate a plurality of monochrome projectors (e.g., three MicroLED projectors) to generate three monochrome images (e.g., red, blue, and green images) that are separately input into a single waveguide of the HMD and combined to form an image that is displayed to the user. By utilizing a single waveguide that includes a plurality of spatially separated input regions (e.g., a region for inputting blue light, a region for inputting red light, a region for inputting green light), the MicroLED display system of the present disclosure may reduce the form factor of the HMD device because of the reduced number of plates that may be required to combine the three monochrome images.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 12, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Pietari Tuomisto, William J. Cummings, Dmitry Reshidko, Tuomas Vallius, David Douglas Bohn
  • Publication number: 20130314766
    Abstract: A nonlinear crystal includes a plurality of poled zones implemented in a nonlinear material. The crystal has a first region and a second region. In the first region, the local average of a length of a period of the poled zones substantially increases with increasing distance from an origin. In the second region, the local average of the length of the period of the poled zones substantially decreases with increasing distance from the origin. The origin is located at an end of the crystal.
    Type: Application
    Filed: December 1, 2011
    Publication date: November 28, 2013
    Applicant: EpiCrystals Oy
    Inventors: Tuomas Vallius, Janne Konttinen, Pietari Tuomisto
  • Patent number: 8264765
    Abstract: A light source including a light emitting unit, a nonlinear medium, and a resonant grating. The light emitting unit is arranged to emit a first light into the nonlinear medium. The nonlinear medium is arranged to generate a second light such that an optical frequency of the second light is higher than an optical frequency of the first light. The resonant grating is arranged to stabilize an optical frequency of the first light by providing optical feedback to the light emitting unit.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 11, 2012
    Assignee: EpiCrystals Oy
    Inventors: Tuomas Vallius, Pietari Tuomisto, Janne Konttinen
  • Patent number: 7944958
    Abstract: A light emitting device including a waveguide having an electrically pumped gain region, a saturable absorber, a nonlinear crystal, an inclined mirror, and a light-concentrating structure. Light pulses emitted from the gain region are reflected by the inclined mirror and focused by the light-concentrating structure into the nonlinear crystal in order to generate frequency-converted light pulses. The gain region, the saturable absorber, the light-concentrating structure and the inclined mirror are implemented on or in a common substrate. The resulting structure is stable and compact, and allows on-wafer testing of produced emitters. The folded structure allows easy alignment of the nonlinear crystal.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: May 17, 2011
    Assignee: EpiCrystals Oy
    Inventors: Janne Konttinen, Pietari Tuomisto, Tomi Jouhti
  • Publication number: 20110051226
    Abstract: A light source including a light emitting unit, a nonlinear medium, and a resonant grating. The light emitting unit is arranged to emit a first light into the nonlinear medium. The nonlinear medium is arranged to generate a second light such that an optical frequency of the second light is higher than an optical frequency of the first light. The resonant grating is arranged to stabilize an optical frequency of the first light by providing optical feedback to the light emitting unit.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 3, 2011
    Applicant: EpiCrystals Oy
    Inventors: Tuomas VALLIUS, Pietari Tuomisto, Janne Konttinen
  • Publication number: 20100142570
    Abstract: A light emitting device including a waveguide having an electrically pumped gain region, a saturable absorber, a nonlinear crystal, an inclined mirror, and a light-concentrating structure. Light pulses emitted from the gain region are reflected by the inclined minor and focused by the light-concentrating structure into the nonlinear crystal in order to generate frequency-converted light pulses. The gain region, the saturable absorber, the light-concentrating structure and the inclined minor are implemented on or in a common substrate. The resulting structure is stable and compact, and allows on-wafer testing of produced emitters. The folded structure allows easy alignment of the nonlinear crystal.
    Type: Application
    Filed: January 17, 2008
    Publication date: June 10, 2010
    Applicant: EpiCrystals Oy
    Inventors: Janne Konttinen, Pietari Tuomisto, Tomi Jouhti
  • Patent number: 7660500
    Abstract: A light emitting device including an array of light emitters to emit first light pulses. Each of the light emitters includes a saturable absorber and a waveguide having an electrically pumped gain region to emit the first light pulses. At least one reflector structure reflects the first light pulses into a nonlinear crystal by changing the direction of the first light pulses by an angle that is in a range of 70 to 110 degrees. The reflector structure includes a sub-wavelength grating structure to change the polarization of the first light pulses. A nonlinear crystal generates second light pulses such that the optical frequency of the second light pulses is two times the optical frequency of the first light pulses.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: February 9, 2010
    Assignee: EpiCrystals Oy
    Inventors: Janne Konttinen, Tomi Jouhti, Pietari Tuomisto
  • Publication number: 20080291951
    Abstract: A light emitting device including an array of light emitters to emit first light pulses. Each of the light emitters includes a saturable absorber and a waveguide having an electrically pumped gain region to emit the first light pulses. At least one reflector structure reflects the first light pulses into a nonlinear crystal by changing the direction of the first light pulses by an angle that is in a range of 70 to 110 degrees. The reflector structure includes a sub-wavelength grating structure to change the polarization of the first light pulses. A nonlinear crystal generates second light pulses such that the optical frequency of the second light pulses is two times the optical frequency of the first light pulses.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Applicant: EpiCrystals Oy
    Inventors: Janne Konttinen, Tomi Jouhti, Pietari Tuomisto
  • Publication number: 20080175284
    Abstract: A light emitting device comprises a waveguide having an electrically pumped gain region, a nonlinear medium, and an inclined mirror. Light pulses emitted from the gain region are reflected by the inclined mirror into the nonlinear medium in order to generate frequency-doubled light pulses. The gain region and the inclined mirror are implemented on the same substrate. The resulting structure is stable and compact, and allows on-wafer testing of produced emitters. The folded structure allows easy alignment of the nonlinear crystal.
    Type: Application
    Filed: January 18, 2007
    Publication date: July 24, 2008
    Applicant: EpiCrystals Oy
    Inventors: Janne Konttinen, Pietari Tuomisto, Tomi Jouhti
  • Patent number: 7394841
    Abstract: A light emitting device comprises a waveguide having an electrically pumped gain region, a nonlinear medium, and an inclined mirror. Light pulses emitted from the gain region are reflected by the inclined mirror into the nonlinear medium in order to generate frequency-doubled light pulses. The gain region and the inclined mirror are implemented on the same substrate. The resulting structure is stable and compact, and allows on-wafer testing of produced emitters. The folded structure allows easy alignment of the nonlinear crystal.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: July 1, 2008
    Assignee: EpiCrystals Oy
    Inventors: Janne Konttinen, Pietari Tuomisto, Tomi Jouhti