Patents by Inventor Pieter Dorenbos
Pieter Dorenbos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11927707Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: November 22, 2022Date of Patent: March 12, 2024Assignee: LUXIUM SOLUTIONS, LLCInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 11927708Abstract: The invention relates to an inorganic scintillator material of formula Lu(2?y)Y(y?z?x)CexMzSi(1?v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: November 22, 2022Date of Patent: March 12, 2024Assignee: LUXIUM SOLUTIONS, LLCInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 11326100Abstract: The disclosure relates to a scintillator and a radiation detector including the scintillator. The scintillator includes a scintillator material. In an embodiment, the scintillator material can include a metal halide doped with Eu2+ and co-doped with Sm2+. The metal halide can include at least one halogen selected from Br, Cl, and I. In an embodiment, the metal halide can include at least one element selected from alkaline-earth metals, rare-earth elements, Al, Ga, and the alkali metals selected from Li, Na, Rb, Cs. In a particular embodiment, co-doping with Sm2+ can shift the scintillation light emission peak to a region of the emission spectrum having a low self-absorbance of the scintillator material.Type: GrantFiled: July 10, 2020Date of Patent: May 10, 2022Assignees: STICHTING VOOR DE TECHNISCHE WETENSCHAPPEN, UNIVERSITE DE BERNEInventors: Pieter Dorenbos, Karl Krämer, Mikhail Alekhin
-
Patent number: 11248169Abstract: The disclosure relates to a scintillator material for a radiation detector. In an embodiment, the scintillator material can include a crystalline alkaline-earth metal halide comprising at least one alkaline-earth metal selected from Mg, Ca, Sr, Ba, said alkaline-earth metal halide being doped with at least one dopant that activates the scintillation thereof other than Sm2+, and co-doped with Sm2+, said alkaline-earth metal halide comprising at least one halogen selected from Br, Cl, I.Type: GrantFiled: July 10, 2020Date of Patent: February 15, 2022Assignees: STICHTING VOOR DE TECHNISCHE WETENSCHAPPEN, UNIVERSITE DE BERNEInventors: Pieter Dorenbos, Karl Krämer, Mikhail Alekhin
-
Patent number: 11187818Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: GrantFiled: January 7, 2020Date of Patent: November 30, 2021Assignees: TECHNISCHE UNIVERSITEIT DELFT, STICHTING VOOR DE TECHNISCHE WETENSCHAPPENInventors: Pieter Dorenbos, Karl W. Kramer
-
Publication number: 20210088678Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: ApplicationFiled: December 8, 2020Publication date: March 25, 2021Applicant: SAINT-GOBAIN CRISTAUX ET DETECTEURSInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 10890670Abstract: The invention relates to an inorganic scintillator material of formula Lu(2?y)Y(y?z?x)CexMzSi(1?v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: May 1, 2019Date of Patent: January 12, 2021Assignee: SAINT-GOBAIN CRISTAUX ET DETECTEURSInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 10564298Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: GrantFiled: December 19, 2018Date of Patent: February 18, 2020Inventors: Pieter Dorenbos, Karl W. Krämer
-
Patent number: 10324198Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: November 22, 2016Date of Patent: June 18, 2019Assignee: SAINT-GOBAIN CRISTAUX ET DETECTEURSInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Publication number: 20190146102Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: ApplicationFiled: December 19, 2018Publication date: May 16, 2019Inventors: Pieter Dorenbos, Karl W. Krämer
-
Patent number: 10203421Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: GrantFiled: March 22, 2016Date of Patent: February 12, 2019Inventors: Pieter Dorenbos, Karl W. Krämer
-
Patent number: 9534170Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: September 27, 2013Date of Patent: January 3, 2017Assignee: SAINT-GOBAIN CRISTAUX ET DETECTEURSInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Publication number: 20160200972Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: ApplicationFiled: March 22, 2016Publication date: July 14, 2016Inventors: Pieter Dorenbos, Peter R. Menge, Vladimir Ouspenski, Karl W. Krämer
-
Publication number: 20140117242Abstract: A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixture thereof, and the scintillation crystal is formed from a melt having a concentration of such elements or mixture thereof of at least approximately 0.02 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection apparatus can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection apparatus can be useful in a variety of applications.Type: ApplicationFiled: October 28, 2013Publication date: May 1, 2014Inventors: Pieter Dorenbos, Peter R. Menge, Vladimir Ouspenski, Karl W. Krämer
-
Patent number: 8574458Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: August 22, 2011Date of Patent: November 5, 2013Assignee: Saint-Gobain Cristaux et DetecteursInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Publication number: 20110297882Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x)CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: ApplicationFiled: August 22, 2011Publication date: December 8, 2011Applicant: SAINT-GOBAIN CRISTAUX ET DETECTEURSInventors: Bernard FERRAND, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 8034258Abstract: The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x) CexMzSi(1-v)M?vO5, in which: M represents a divalent alkaline earth metal and M? represents a trivalent metal, (z+v) being greater than or equal to 0.0001 and less than or equal to 0.2; z being greater than or equal to 0 and less than or equal to 0.2; v being greater than or equal to 0 and less than or equal to 0.2; x being greater than or equal to 0.0001 and less than 0.1; and y ranging from (x+z) to 1. In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.Type: GrantFiled: November 20, 2009Date of Patent: October 11, 2011Assignee: Saint-Gobain Cristaux et DetecteursInventors: Bernard Ferrand, Bruno Viana, Ludivine Pidol, Pieter Dorenbos
-
Patent number: 7910894Abstract: A scintillating material Cs(2-z)RbzLiLn(1-x)X6:xCe3+, where X is either Br or I, Ln is Y or Gd or Lu or Sc or La, where z is greater or equal to 0 and less or equal to 2, and x is above 0.0005 useful for detecting neutrons in a sample of radiation.Type: GrantFiled: February 25, 2009Date of Patent: March 22, 2011Assignees: Stichting Voor de Technische Wetenschappen, Universite de BerneInventors: Karl Wilhelm Kraemer, Hans-Ulrich Guedel, Aurelie Bessiere, Pieter Dorenbos, Carel Wilhelm Eduard Van Eijk
-
Publication number: 20100224798Abstract: A scintillator material has a formula La(1-x)CexBr3(1-y)I3y in which x represents a real number greater than or equal to 0.0005 and less than 1, y represents a real number greater than 0.20 and equal to or less than 0.9. This material has scintillation properties and emission properties and is useful in a scintillation-based detector for detecting radiation over a wide energy range.Type: ApplicationFiled: September 11, 2009Publication date: September 9, 2010Applicants: STICHTING VOOR DE TECHNISCHE WETENSCHAPPEN, UNIVERSITE DE BERNEInventors: Pieter Dorenbos, Muhammad D. Birowosuto, Karl W. Kraemer, Hans-Ulrich Guedel
-
Patent number: 7767971Abstract: The invention concerns a material comprising a compound of formula Pr(1-x-y)LnyCexX3 wherein—Ln is chosen from the elements or mixtures of at least two elements, of the group: La, Nd, Pm, Sm, Eu, Gd, Y, —X is chosen from the halides or mixtures of at least two halides, of the group: Cl, Br, I, —x is above 0.0005 and is lower than 1, —y is from 0 to less than 1 and—x+y) is less than 1, and its use as scintillation detector, for example in PET scanner with time of flight capabilities.Type: GrantFiled: September 15, 2006Date of Patent: August 3, 2010Assignees: Stichting Voor de Technische Wetenschappen, Universite de BerneInventors: Carel Wilhelm Eduard Van Eijk, Hans-Ulrich Guedel, Karl Wilhelm Kraemer, Muhammad Danang Birowosuto, Pieter Dorenbos