Patents by Inventor Pietro Gallina
Pietro Gallina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250062674Abstract: A method may include, when in a low-power mode of a power converter, monitoring an output voltage of the power converter; comparing, with a single comparator, the output voltage to a first threshold voltage and cause the power converter to enter a magnetization phase of the low-power mode responsive to the output voltage falling below the first threshold voltage; and during the magnetization phase and a demagnetization phase of the low-power mode, comparing, with the single comparator, the output voltage to a second threshold voltage lower than the first threshold voltage and cause the power converter to enter the high-power mode responsive to the output voltage falling below the second threshold voltage.Type: ApplicationFiled: August 16, 2023Publication date: February 20, 2025Applicant: Cirrus Logic International Semiconductor Ltd.Inventors: Shashank ALEVOOR, Siddharth MARU, Pietro GALLINA, Chanchal GUPTA, Vivek PARASURAM
-
Publication number: 20230188156Abstract: A power converter system for converting an input voltage at an input into an output voltage at an output may comprise a switch network comprising a reactive circuit element and a plurality of switches, switch control circuitry configured to operate the plurality of switch in a plurality of periodic, sequential states to regulate the output voltage, and reference current generating circuitry. The reference current generating circuitry may include a comparator coupled to a sensed switch of the plurality of switches and configured to compare a current flowing through the sensed switch to a reference current and current-steering circuitry coupled to the comparator configured to generate the reference current and alternate the reference current between a first reference current and a second reference current whenever the switch control circuitry changes from one state of the plurality of periodic, sequential states to another state of the plurality of periodic, sequential states.Type: ApplicationFiled: November 18, 2022Publication date: June 15, 2023Applicant: Cirrus Logic International Semiconductor Ltd.Inventors: Ivan PERRY, Hasnain AKRAM, Graeme G. MACKAY, Pietro GALLINA, Chanchal GUPTA, Bryan QUINONES, Abhishek RAY
-
Patent number: 10958174Abstract: A power converter and method to detect a light load condition at an output of the power converter are presented. The power converter may have an inductor and a resistive element connected between an input of the power converter and an input of the inductor. The power converter may have a first chopping unit to generate a chopped voltage signal at an output of said first chopping unit, wherein the chopped voltage signal is generated by chopping an inductor voltage at the input of said inductor based on a duty cycle of the power converter. The power converter may have a reference current source, wherein the reference current source and a replica resistive element are arranged in series. The power converter may have a comparator unit to generate, based on the reference potential and based on the chopped voltage signal, a signal indicative of said light load condition.Type: GrantFiled: July 8, 2019Date of Patent: March 23, 2021Assignee: Dialog Semiconductor Inc.Inventors: Manmeet Singh, Pietro Gallina, Rosario Pagano, Vijay Choudhary, Vivek Parasuram, John Kesterson
-
Patent number: 10811970Abstract: An object of this disclosure is to implement a Buck, Boost, or other switching converter, with a circuit to supply a reference voltage and Adaptive Voltage Positioning (AVP), by means of a servo and programmable load regulation. The reference voltage is modified, achieving a high DC gain, using a servo to remove any DC offset at the output of the switching converter. The correction implemented by the servo is measured, and a programmable fraction of the correction is injected back on either the reference voltage or the output feedback voltage. To accomplish at least one of these objects, a Buck, Boost, or other switching converter is implemented, consisting of an output stage driven by switching logic, with a servo configured between the reference voltage and the control loops of the Buck converter. The AVP function is implemented on either the reference voltage or output feedback voltage.Type: GrantFiled: October 21, 2019Date of Patent: October 20, 2020Assignee: Dialog Semiconductor (UK) LimitedInventors: Pietro Gallina, Vincenzo Bisogno, Mark Childs
-
Publication number: 20200052591Abstract: An object of this disclosure is to implement a Buck, Boost, or other switching converter, with a circuit to supply a reference voltage and Adaptive Voltage Positioning (AVP), by means of a servo and programmable load regulation. The reference voltage is modified, achieving a high DC gain, using a servo to remove any DC offset at the output of the switching converter. The correction implemented by the servo is measured, and a programmable fraction of the correction is injected back on either the reference voltage or the output feedback voltage. To accomplish at least one of these objects, a Buck, Boost, or other switching converter is implemented, consisting of an output stage driven by switching logic, with a servo configured between the reference voltage and the control loops of the Buck converter. The AVP function is implemented on either the reference voltage or output feedback voltage.Type: ApplicationFiled: October 21, 2019Publication date: February 13, 2020Inventors: Pietro Gallina, Vincenzo Bisogno, Mark Childs
-
Patent number: 10505450Abstract: A servo block in a Buck, Boost, or switching converter allows a positive offset to be applied to the DAC voltage. In a typical switching converter application, the load will have a positive current, sourced from the switching converter to ground through the load. This will cause the output voltage of the switching converter to fall with the output impedance. The servo block corrects the output voltage by adjusting the DAC voltage upwards. In the case where current is forced back into the switching converter, causing the output voltage to rise, the servo block will have affect. The behavior of the servo block is desirable as it reduces the negative affect the servo block may have on load transients occurring when the switching converter is in over voltage. In particular, the idea of shifting the DAC voltage for several different loops with a single servo block is disclosed.Type: GrantFiled: October 11, 2018Date of Patent: December 10, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Mark Childs, Pietro Gallina, Vincenzo Bisogno
-
Patent number: 10468984Abstract: An object of this disclosure is to implement a Buck, Boost, or other switching converter, with a circuit to supply a reference voltage and Adaptive Voltage Positioning (AVP), by a servo and programmable load regulation. The reference voltage is modified, achieving a high DC gain, using a servo to remove any DC offset at the output of the switching converter. The correction implemented by the servo is measured, and a programmable fraction of the correction is injected back on either the reference voltage or the output feedback voltage. To accomplish at least one of these objects, a Buck, Boost, or other switching converter is implemented, consisting of an output stage driven by switching logic, with a servo configured between the reference voltage and the control loops of the Buck converter. The AVP function is implemented on either the reference voltage or output feedback voltage.Type: GrantFiled: July 1, 2016Date of Patent: November 5, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Pietro Gallina, Vincenzo Bisogno, Mark Childs
-
Patent number: 10355595Abstract: A circuit and method providing switching regulation configured to provide a pulse frequency modulation (PFM) mode of Operation with reduced electromagnetic interference (EMI) comprising an output stage configured to provide switching comprising a first and second transistor, a sense circuit configured to provide output current information sensing from an output stage and a current limit reference, a first digital-to-analog converter (DAC) configured to provide signal to the current limit reference, an adder function configured to provide a signal to the first digital-to-analog converter (DAC), and a linear shift feedback register (LSFR) configured to provide a signal to an adder function followed by the first digital-to-analog converter (DAC), and the LSFR receives a clock signal from said output stage.Type: GrantFiled: October 22, 2018Date of Patent: July 16, 2019Assignee: Dialog Semiconductor (UK) LimitedInventors: Mark Childs, Tiago Patrao, Pietro Gallina, Alexandre Tavares, Michele De Fazio
-
Publication number: 20190058399Abstract: A circuit and method providing switching regulation configured to provide a pulse frequency modulation (PFM) mode of Operation with reduced electromagnetic interference (EMI) comprising an output stage configured to provide switching comprising a first and second transistor, a sense circuit configured to provide output current information sensing from an output stage and a current limit reference, a first digital-to-analog converter (DAC) configured to provide signal to the current limit reference, an adder function configured to provide a signal to the first digital-to-analog converter (DAC), and a linear shift feedback register (LSFR) configured to provide a signal to an adder function followed by the first digital-to-analog converter (DAC), and the LSFR receives a clock signal from said output stage.Type: ApplicationFiled: October 22, 2018Publication date: February 21, 2019Inventors: Mark Childs, Tiago Patrao, Pietro Gallina, Alexandre Tavares, Michele De Fazio
-
Publication number: 20190044444Abstract: A servo block in a Buck, Boost, or switching converter allows a positive offset to be applied to the DAC voltage. In a typical switching converter application, the load will have a positive current, sourced from the switching converter to ground through the load. This will cause the output voltage of the switching converter to fall with the output impedance. The servo block corrects the output voltage by adjusting the DAC voltage upwards. In the case where current is forced back into the switching converter, causing the output voltage to rise, the servo block will have affect. The behavior of the servo block is desirable as it reduces the negative affect the servo block may have on load transients occurring when the switching converter is in over voltage. In particular, the idea of shifting the DAC voltage for several different loops with a single servo block is disclosed.Type: ApplicationFiled: October 11, 2018Publication date: February 7, 2019Inventors: Mark Childs, Pietro Gallina, Vincenzo Bisogno
-
Patent number: 10116210Abstract: A servo block in a Buck, Boost, or switching converter allows a positive offset to be applied to the DAC voltage. In a typical switching converter application, the load will have a positive current, sourced from the switching converter to ground through the load. This will cause the output voltage of the switching converter to fall with the output impedance. The servo block corrects the output voltage by adjusting the DAC voltage upwards. In the case where current is forced back into the switching converter, causing the output voltage to rise, the servo block will have affect. The behavior of the servo block is desirable as it reduces the negative affect the servo block may have on load transients occurring when the switching converter is in over voltage. In particular, the idea of shifting the DAC voltage for several different loops with a single servo block is disclosed.Type: GrantFiled: September 4, 2015Date of Patent: October 30, 2018Assignee: Dialog Semiconductor (UK) LimitedInventors: Mark Childs, Pietro Gallina, Vincenzo Bisogno
-
Patent number: 10110126Abstract: A circuit and method providing switching regulation configured to provide a pulse frequency modulation (PFM) mode of operation with reduced electromagnetic interference (EMI) comprising an output stage configured to provide switching comprising a first and second transistor, a sense circuit configured to provide output current information sensing from an output stage and a current limit reference, a first digital-to-analog converter (DAC) configured to provide signal to the current limit reference, an adder function configured to provide a signal to the first digital-to-analog converter (DAC), and a linear shift feedback register (LSFR) configured to provide a signal to an adder function followed by the first digital-to-analog converter (DAC), and the LSFR receives a clock signal from said output stage.Type: GrantFiled: September 4, 2015Date of Patent: October 23, 2018Assignee: Dailog Semiconductor (UK) LimitedInventors: Mark Childs, Tiago Patrao, Pietro Gallina, Alexandre Tavares, Michele De Fazio
-
Publication number: 20180006558Abstract: An object of this disclosure is to implement a Buck, Boost, or other switching converter, with a circuit to supply a reference voltage and Adaptive Voltage Positioning (AVP), by means of a servo and programmable load regulation. The reference voltage is modified, achieving a high DC gain, using a servo to remove any DC offset at the output of the switching converter. The correction implemented by the servo is measured, and a programmable fraction of the correction is injected back on either the reference voltage or the output feedback voltage. To accomplish at least one of these objects, a Buck, Boost, or other switching converter is implemented, consisting of an output stage driven by switching logic, with a servo configured between the reference voltage and the control loops of the Buck converter. The AVP function is implemented on either the reference voltage or output feedback voltage.Type: ApplicationFiled: July 1, 2016Publication date: January 4, 2018Inventors: Pietro Gallina, Vincenzo Bisogno, Mark Childs
-
Publication number: 20170070145Abstract: A circuit and method providing switching regulation configured to provide a pulse frequency modulation (PFM) mode of operation with reduced electromagnetic interference (EMI) comprising an output stage configured to provide switching comprising a first and second transistor, a sense circuit configured to provide output current information sensing from an output stage and a current limit reference, a first digital-to-analog converter (DAC) configured to provide signal to the current limit reference, an adder function configured to provide a signal to the first digital-to-analog converter (DAC), and a linear shift feedback register (LSFR) configured to provide a signal to an adder function followed by the first digital-to-analog converter (DAC), and the LSFR receives a clock signal from said output stage.Type: ApplicationFiled: September 4, 2015Publication date: March 9, 2017Inventors: Mark Childs, Tiago Patrao, Pietro Gallina, Alexandre Tavares, Michele De Fazio
-
Publication number: 20170070146Abstract: A servo block in a Buck, Boost, or switching converter allows a positive offset to be applied to the DAC voltage. In a typical switching converter application, the load will have a positive current, sourced from the switching converter to ground through the load. This will cause the output voltage of the switching converter to fall with the output impedance. The servo block corrects the output voltage by adjusting the DAC voltage upwards. In the case where current is forced back into the switching converter, causing the output voltage to rise, the servo block will have affect. The behavior of the servo block is desirable as it reduces the negative affect the servo block may have on load transients occurring when the switching converter is in over voltage. In particular, the idea of shifting the DAC voltage for several different loops with a single servo block is disclosed.Type: ApplicationFiled: September 4, 2015Publication date: March 9, 2017Inventors: Mark Childs, Pietro Gallina, Vincenzo Bisogno
-
Patent number: 9471071Abstract: An apparatus, system, and method for a voltage regulator for improved voltage regulation using a remote feedback and remote feedback low pass filter. The system comprises of a power management unit, a remote load point (HOST), an inductor, a filtering capacitor, a printed circuit board (PCB) track output net, a ground connection, a remote feedback line, and a low pass filter (LPF). In this present disclosure, the electrical connection of the remote feedback low pass filter to the output filter capacitor minimizes transient ringing, reduced noise coupling, and improved system stability.Type: GrantFiled: March 11, 2014Date of Patent: October 18, 2016Assignee: Dialog Semiconductor (UK) LimitedInventor: Pietro Gallina
-
Patent number: 9323265Abstract: Multi-stage amplifiers which provide a constant output voltage subject to load transients are presented. The amplifier has a pass device to source a load current at an output voltage. The amplifier has a first driver circuit to control the pass device based on a reference voltage and based on a first feedback voltage. The amplifier has a sink transistor to sink a first current from the output node to a low potential. Furthermore, the amplifier comprises a bypass transistor configured to couple a sense voltage, to sink a second current from the output node to the low potential. There is a second driver circuit to control the sink transistor and the bypass transistor, based on the reference voltage and based on a second feedback voltage. A voltage divider derives the first feedback voltage, the second feedback voltage and the sense voltage from the output voltage.Type: GrantFiled: November 19, 2014Date of Patent: April 26, 2016Assignee: Dialog Semiconductor (UK) LimitedInventors: Ambreesh Bhattad, Frank Kronmueller, Pietro Gallina
-
Publication number: 20150378379Abstract: Multi-stage amplifiers which provide a constant output voltage subject to load transients are presented. The amplifier has a pass device to source a load current at an output voltage. The amplifier has a first driver circuit to control the pass device based on a reference voltage and based on a first feedback voltage. The amplifier has a sink transistor to sink a first current from the output node to a low potential. Furthermore, the amplifier comprises a bypass transistor configured to couple a sense voltage, to sink a second current from the output node to the low potential. There is a second driver circuit to control the sink transistor and the bypass transistor, based on the reference voltage and based on a second feedback voltage. A voltage divider derives the first feedback voltage, the second feedback voltage and the sense voltage from the output voltage.Type: ApplicationFiled: November 19, 2014Publication date: December 31, 2015Inventors: Ambreesh Bhattad, Frank Kronmueller, Pietro Gallina
-
Publication number: 20150253790Abstract: An apparatus, system, and method for a voltage regulator for improved voltage regulation using a remote feedback and remote feedback low pass filter. The system comprises of a power management unit, a remote load point (HOST), an inductor, a filtering capacitor, a printed circuit board (PCB) track output net, a ground connection, a remote feedback line, and a low pass filter (LPF). In this present disclosure, the electrical connection of the remote feedback low pass filter to the output filter capacitor minimizes transient ringing, reduced noise coupling, and improved system stability.Type: ApplicationFiled: March 11, 2014Publication date: September 10, 2015Applicant: Dialog Semiconductor GmbHInventor: Pietro Gallina
-
Patent number: 8154172Abstract: The invention relates to a circuit for highly efficient driving of piezoelectric loads, comprising a linear driving circuit portion connected to the load through an inductive-resistive connection whereto a voltage waveform is applied. Advantageously, the circuit comprises further respective circuit portions, structurally independent, connected in turn to the inductive-resistive connection through respective inductors to supply a considerable fraction of the overall current required by the load in the transient and steady state respectively.Type: GrantFiled: April 21, 2006Date of Patent: April 10, 2012Assignee: STMicroelectronics S.r.l.Inventors: Luca Battaglin, Pietro Gallina, Giancarlo Saba, Giancarlo Zinco, Claudio Diazzi, Vittorio Peduto