Patents by Inventor Pin-Ching Maness

Pin-Ching Maness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9914947
    Abstract: Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: March 13, 2018
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Jianping Yu, Bo Wang, Troy Paddock, Damian Carrieri, Pin-Ching Maness, Michael Seibert
  • Publication number: 20160177353
    Abstract: Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Inventors: Jianping YU, Bo WANG, Troy PADDOCK, Damian CARRIERI, Pin-Ching MANESS, Michael SEIBERT
  • Patent number: 9309541
    Abstract: Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: April 12, 2016
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Jianping Yu, Troy Paddock, Damian Carrieri, Pin-Ching Maness, Michael Seibert
  • Publication number: 20150247170
    Abstract: Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 3, 2015
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Jianping YU, Troy PADDOCK, Damian CARRIERI, Pin-Ching MANESS, Michael SEIBERT
  • Publication number: 20130203136
    Abstract: Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 8, 2013
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Jianping YU, Troy PADDOCK, Damian CARRIERI, Pin-Ching MANESS, Michael SEIBERT
  • Patent number: 5250427
    Abstract: A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: October 5, 1993
    Assignee: Midwest Research Institute
    Inventors: Paul F. Weaver, Pin-Ching Maness