Patents by Inventor Pin-Wei LU

Pin-Wei LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11995390
    Abstract: A circuit includes a first transistor, a second type-one transistor, a first type-two transistor, a third type-one transistor, a fourth type-one transistor, and a fifth type-one transistor. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The third type-one transistor has a first active-region conductively connected with an active-region of the first type-one transistor. Third type-one transistor has a second active-region and a gate conductively connected to each other. The fifth type-one transistor has a first active-region conductively connected with the gate of the third type-one transistor and has a second active-region configured to have a first supply voltage of a second power supply. The fifth type-one transistor is configured to be at a conducting state.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Yu Lu, Ting-Wei Chiang, Hui-Zhong Zhuang, Jerry Chang Jui Kao, Pin-Dai Sue, Jiun-Jia Huang, Yu-Ti Su, Wei-Hsiang Ma
  • Publication number: 20240149494
    Abstract: A method for silicon carbide ingot peeling includes the steps of: placing the silicon carbide ingot between first and second suckers; having a pressing head disposed on a top surface of the first sucker to apply mechanical oscillatory energy to both the silicon carbide ingot and the second sucker through the first sucker; and, having an elastic element disposed under the second sucker to absorb part of the mechanical oscillatory energy to transmit longitudinal waves thereof to a modified layer of the silicon carbide ingot for propagating individually intermittent invisible cracks at the modified layer to break silicon carbide chains at different levels. Till the cracks connect together for forming a continuous crack across the silicon carbide ingot, a top portion of the silicon carbide ingot is then separable therefrom to form a wafer. In addition, an apparatus for silicon carbide ingot peeling is also provided.
    Type: Application
    Filed: February 13, 2023
    Publication date: May 9, 2024
    Inventors: WENG-JUNG LU, YING-FANG CHANG, PIN-YAO LEE, YI-WEI LIN
  • Patent number: 11935888
    Abstract: A method of making an integrated circuit includes steps of selecting a first cell and a second cell for an integrated circuit layout from a cell library in an electronic design automation (EDA) system, the first and second cells each having a cell active area, a cell gate electrode, at least one fin of a first set of fins, and a cell border region, each cell also having the active area at an exposed side, and placing the first exposed side against the second exposed side at a cell border. The method also includes operations of aligning at least one fin of the first set of fins with at least one fin of the second set of fins across a cell border.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pin-Dai Sue, Ting-Wei Chiang, Hui-Zhong Zhuang, Ya-Chi Chou, Chi-Yu Lu
  • Publication number: 20240027281
    Abstract: A drive system thermal temperature rise test and compensation system. The system has an optical non-contact type sensing head mounted on a main shaft of a machine tool, and a sensing center is formed in the center of the sensing head. A platform driven by a transmission device of the machine tool is provided with plural ball lens devices, and a temperature sensor for transmitting temperature data externally is further provided on the transmission device. After the machine tool sequentially records an original point coordinate for each ball lens center by using the sensing head, the sensing head is cyclically and sequentially moved to the original point coordinate of each ball lens, so as to measure a displacement error between the sensing center and the ball lens center resulted from thermal shifts of the transmission device, as well as capable of measuring multiaxial errors and using various axial temperatures for compensation.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 25, 2024
    Inventors: Wen-Yuh JYWE, Tung-Hsien HSIEH, Chia-Ming HSU, Yu-Wei CHANG, Sen-Yi HUANG, Ching-Ying CHIU, Pin-Wei LU, Jheng-Jhong ZENG