Patents by Inventor Ping-chun Yeh

Ping-chun Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220289564
    Abstract: A method includes forming a front-end-of-the-line (FEOL) element over a substrate; forming a back-end-of-the-line (BEOL) element over the FEOL element; forming an interconnection structure over the substrate; forming a conductive shielding layer electrically connected to the interconnection structure and vertically overlapping the FEOL element and the BEOL element, wherein the conductive shielding layer is grounded to the substrate through the interconnection structure; and forming a dielectric layer covering the conductive shielding layer.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun YEH, Lien-Yao TSAI, Shao-Chi YU
  • Patent number: 11345591
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate. an orthogonal projection of the conductive shielding layer on the semiconductor substrate does not overlap with an orthogonal projection of the FEOL element on the semiconductor substrate.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 31, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun Yeh, Lien-Yao Tsai, Shao-Chi Yu
  • Publication number: 20200115223
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate. an orthogonal projection of the conductive shielding layer on the semiconductor substrate does not overlap with an orthogonal projection of the FEOL element on the semiconductor substrate.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun YEH, Lien-Yao TSAI, Shao-Chi YU
  • Patent number: 10508028
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun Yeh, Lien-Yao Tsai, Shao-Chi Yu
  • Publication number: 20190112184
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 18, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun YEH, Lien-Yao TSAI, Shao-Chi YU
  • Patent number: 10155660
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping Chun Yeh, Lien-Yao Tsai, Shao-Chi Yu
  • Publication number: 20160214855
    Abstract: A device includes a complementary metal-oxide-semiconductor (CMOS) wafer and a conductive shielding layer. The CMOS wafer includes a semiconductor substrate, at least one front-end-of-the-line (FEOL) element, at least one back-end-of-the-line (BEOL) element and at least one dielectric layer. The FEOL element is disposed on the semiconductor substrate, the dielectric layer is disposed on the semiconductor substrate, and the BEOL element is disposed on the dielectric layer. The conductive shielding layer is disposed on the dielectric layer, in which the conductive shielding layer is electrically connected to the semiconductor substrate.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 28, 2016
    Inventors: Ping Chun YEH, Lien-Yao TSAI, Shao-Chi YU
  • Patent number: 8338906
    Abstract: An integrated circuit structure has a metal silicide layer formed on an n-type well region, a p-type guard ring formed on the n-type well region and encircling the metal silicide layer. The outer portion of the metal silicide layer extends to overlap the inner edge of the guard ring, and a Schottky barrier is formed at the junction of the internal portion of the metal silicide layer and the well region. A conductive contact is in contact with the internal portion and the outer portion of the metal silicide layer.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 25, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ping-Chun Yeh, Der-Chyang Yeh, Ruey-Hsin Liu, Mingo Liu
  • Patent number: 8334579
    Abstract: An integrated circuit device and method for fabricating the integrated circuit device is disclosed. The integrated circuit device includes a substrate, a diffusion source, and a lightly doped diffusion region in contact with a conductive layer. A junction of the lightly doped diffusion region with the conductive layer forms a Schottky region. An annealing process is performed to form the lightly doped diffusion region. The annealing process causes dopants from the diffusion source (for example, an n-well disposed in the substrate) of the integrated circuit device to diffuse into a region of the substrate, thereby forming the lightly doped diffusion region.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping Chun Yeh, Der-Chyang Yeh, Chih-Ping Chao
  • Publication number: 20120086099
    Abstract: An integrated circuit device and method for fabricating the integrated circuit device is disclosed. The integrated circuit device includes a substrate, a diffusion source, and a lightly doped diffusion region in contact with a conductive layer. A junction of the lightly doped diffusion region with the conductive layer forms a Schottky region. An annealing process is performed to form the lightly doped diffusion region. The annealing process causes dopants from the diffusion source (for example, an n-well disposed in the substrate) of the integrated circuit device to diffuse into a region of the substrate, thereby forming the lightly doped diffusion region.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping Chun Yeh, Der-Chyang Yeh, Chih-Ping Chao
  • Publication number: 20090283841
    Abstract: An integrated circuit structure has a metal silicide layer formed on an n-type well region, a p-type guard ring formed on the n-type well region and encircling the metal silicide layer. The outer portion of the metal silicide layer extends to overlap the inner edge of the guard ring, and a Schottky barrier is formed at the junction of the internal portion of the metal silicide layer and the well region. A conductive contact is in contact with the internal portion and the outer portion of the metal silicide layer.
    Type: Application
    Filed: December 8, 2008
    Publication date: November 19, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ping-Chun Yeh, Der-Chyang Yeh, Ruey-Hsin Liu, Mingo Liu
  • Patent number: 6859103
    Abstract: A bias circuit is provided for improving linearity of a radio frequency power amplifier. The bias circuit includes a bias transistor having a collector, an emitter, and a base. The collector is connected to a DC voltage source, the emitter is connected to a radio frequency transistor, and the base is connected to a bias voltage source. A capacitor and an inductor are connected in series and are coupled either between the emitter of the bias transistor and ground or between the base of the bias transistor and ground, thereby constructing an LC series-connected resonator circuit. The LC series-connected resonator circuit directly conducts the part of the radio frequency input signal, which is coupled back to the bias transistor, into the ground, thereby improving linearity of the radio frequency power amplifier. Preferably, the LC series-connected resonator circuit is designed to have a resonant frequency, which is equal to a frequency of a second harmonic component of the radio frequency input signal.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 22, 2005
    Assignee: Delta Electronics, Inc.
    Inventor: Ping-chun Yeh
  • Publication number: 20040251966
    Abstract: A bias circuit is provided for improving linearity of a radio frequency power amplifier. The bias circuit includes a bias transistor having a collector, an emitter, and a base. The collector is connected to a DC voltage source, the emitter is connected to a radio frequency transistor, and the base is connected to a bias voltage source. A capacitor and an inductor are connected in series and are coupled either between the emitter of the bias transistor and ground or between the base of the bias transistor and ground, thereby constructing an LC series-connected resonator circuit. The LC series-connected resonator circuit directly conducts the part of the radio frequency input signal, which is coupled back to the bias transistor, into the ground, thereby improving linearity of the radio frequency power amplifier. Preferably, the LC series-connected resonator circuit is designed to have a resonant frequency, which is equal to a frequency of a second harmonic component of the radio frequency input signal.
    Type: Application
    Filed: August 22, 2003
    Publication date: December 16, 2004
    Inventor: Ping-chun Yeh