Patents by Inventor Ping Jian
Ping Jian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250218978Abstract: An electronic device is disclosed. The electronic device includes a carrier having a first surface and a first lateral surface, an antenna adjacent to the first surface of the carrier, and a shielding layer covering a portion of the first lateral surface of the carrier. The shielding layer is configured to allow a gain of the antenna to be greater than 20 dB.Type: ApplicationFiled: February 25, 2025Publication date: July 3, 2025Applicant: Advanced Semiconductor Engineering, Inc.Inventors: Hui-Ping JIAN, Ming-Hung CHEN, Jia-Feng HO
-
Patent number: 12237272Abstract: An electronic device is disclosed. The electronic device includes a carrier having a first surface and a first lateral surface, an antenna adjacent to the first surface of the carrier, and a shielding layer covering a portion of the first lateral surface of the carrier. The shielding layer is configured to allow a gain of the antenna to be greater than 20 dB.Type: GrantFiled: December 10, 2021Date of Patent: February 25, 2025Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Hui-Ping Jian, Ming-Hung Chen, Jia-Feng Ho
-
Publication number: 20240126327Abstract: The present disclosure provides an electronic wearable device. The electronic wearable device includes a first module having a first contact and a second module having a second contact. The first contact is configured to keep electrical connection with the second contact in moving with respect to each other during a wearing period.Type: ApplicationFiled: October 14, 2022Publication date: April 18, 2024Applicant: Advanced Semiconductor Engineering, Inc.Inventors: Chao Wei LIU, Wei-Hao CHANG, Yung-I YEH, Jen-Chieh KAO, Tun-Ching PI, Ming-Hung CHEN, Hui-Ping JIAN, Shang-Lin WU
-
Publication number: 20230187374Abstract: An electronic device is disclosed. The electronic device includes a carrier having a first surface and a first lateral surface, an antenna adjacent to the first surface of the carrier, and a shielding layer covering a portion of the first lateral surface of the carrier. The shielding layer is configured to allow a gain of the antenna to be greater than 20 dB.Type: ApplicationFiled: December 10, 2021Publication date: June 15, 2023Applicant: Advanced Semiconductor Engineering, Inc.Inventors: Hui-Ping JIAN, Ming-Hung CHEN, Jia-Feng HO
-
Patent number: 11302647Abstract: The present disclosure provides for a semiconductor device package and a method for manufacturing the same. The semiconductor device package includes a substrate, a conductive element and conductive layers. The substrate has a first surface, a second surface opposite to the first surface and a lateral surface extending between the first surface and the second surface. The conductive element is disposed on the first surface of the substrate. The conductive layers have a first portion on the conductive element and a second portion on the lateral surface of the substrate. A number of layers of the first portion of the conductive layers is different from a number of layers of the second portion of the conductive layers.Type: GrantFiled: May 14, 2020Date of Patent: April 12, 2022Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Ming-Hung Chen, Hui-Ping Jian, Wei-Zhen Qiu
-
Publication number: 20210358859Abstract: The present disclosure provides for a semiconductor device package and a method for manufacturing the same. The semiconductor device package includes a substrate, a conductive element and conductive layers. The substrate has a first surface, a second surface opposite to the first surface and a lateral surface extending between the first surface and the second surface. The conductive element is disposed on the first surface of the substrate. The conductive layers have a first portion on the conductive element and a second portion on the lateral surface of the substrate. A number of layers of the first portion of the conductive layers is different from a number of layers of the second portion of the conductive layers.Type: ApplicationFiled: May 14, 2020Publication date: November 18, 2021Applicant: Advanced Semiconductor Engineering, Inc.Inventors: Ming-Hung CHEN, Hui-Ping JIAN, Wei-Zhen QIU
-
Publication number: 20180008205Abstract: A system having a processor obtain a digital hemodynamic data from a hemodynamic sensor, obtain one or more vital sign parameters characterizing vital sign data from the digital hemodynamic data, derive differential parameters based on the one or more vital sign parameters, generate combinatorial parameters using the one or more vital sign parameters and the differential parameters, determine a risk score corresponding to a probability of a future hypotension event for the living subject based on a weighted combination of a plurality of hypotension profiling parameters including the one or more vital sign parameters characterizing vital sign data, the differential parameters and the combinatorial parameters, and invoke a sensory alarm if the risk score satisfies a predetermined risk criterion.Type: ApplicationFiled: June 27, 2017Publication date: January 11, 2018Applicant: Edwards Lifesciences CorporationInventors: Feras Al Hatib, Zhong ping Jian, Sai Prasad Buddi
-
Patent number: 7745333Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.Type: GrantFiled: July 24, 2008Date of Patent: June 29, 2010Assignee: Applied Materials, Inc.Inventors: Ken Kaung Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Avgerinos V. Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael X. Yang, Hua Chung, Jeong Soo Byun
-
Patent number: 7695563Abstract: In one embodiment, a method for depositing a tungsten material on a substrate within a process chamber is provided which includes exposing the substrate to a gaseous mixture containing a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the substrate during a tungsten deposition process. The process further includes removing reaction by-products generated during the tungsten deposition process from the process chamber, exposing the substrate to the reducing gas to react with residual tungsten precursor within the process chamber during a soak process, removing reaction by-products generated during the soak process from the process chamber, and repeating the tungsten deposition process and the soak process during a cyclic deposition process. In the examples, the reducing gas may contain diborane or silane.Type: GrantFiled: January 8, 2007Date of Patent: April 13, 2010Assignee: Applied Materials, Inc.Inventors: Xinliang Lu, Ping Jian, Jong Hyun Yoo, Ken Kaung Lai, Alfred W. Mak, Robert L. Jackson, Ming Xi
-
Publication number: 20080317954Abstract: In one embodiment, a method for depositing a tungsten material on a substrate within a process chamber is provided which includes exposing the substrate to a gaseous mixture containing a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the substrate during a tungsten deposition process. The process further includes removing reaction by-products generated during the tungsten deposition process from the process chamber, exposing the substrate to the reducing gas to react with residual tungsten precursor within the process chamber during a soak process, removing reaction by-products generated during the soak process from the process chamber, and repeating the tungsten deposition process and the soak process during a cyclic deposition process. In the examples, the reducing gas may contain diborane or silane.Type: ApplicationFiled: January 8, 2007Publication date: December 25, 2008Inventors: XINLIANG LU, Ping Jian, Jong Hyun Yoo, Ken Kaung Lai, Alfred W. Mak, Robert L. Jackson, Ming Xi
-
Publication number: 20080280438Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.Type: ApplicationFiled: July 24, 2008Publication date: November 13, 2008Inventors: Ken Kaung Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Aygerinos V. Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael X. Yang, Hua Chung, Jeong Soo Byun
-
Patent number: 7405158Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.Type: GrantFiled: January 19, 2005Date of Patent: July 29, 2008Assignee: Applied Materials, Inc.Inventors: Ken Kaung Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Averginos V. Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael X. Yang, Hua Chung, Jeong Soo Byun
-
Patent number: 7211144Abstract: A method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.Type: GrantFiled: July 12, 2002Date of Patent: May 1, 2007Assignee: Applied Materials, Inc.Inventors: Xinliang Lu, Ping Jian, Jong Hyun Yoo, Ken Kaung Lai, Alfred W. Mak, Robert L. Jackson, Ming Xi
-
Publication number: 20060009034Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.Type: ApplicationFiled: January 19, 2005Publication date: January 12, 2006Inventors: Ken Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Aygerinos Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael Yang, Hua Chung, Jeong Byun
-
Publication number: 20040013803Abstract: Methods of depositing titanium nitride (TiN) films on a substrate are disclosed. The titanium nitride (TiN) films may be formed using a cyclical deposition process by alternately adsorbing a titanium-containing precursor and a NH3 gas on the substrate. The titanium-containing precursor and the NH3 gas react to form the titanium nitride (TiN) layer on the substrate. The titanium nitride (TiN) films are compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, an interconnect structure is fabricated. The titanium nitride films may also be used as an electrode of a three-dimensional capacitor structure such as for example, trench capacitors and crown capacitors.Type: ApplicationFiled: December 16, 2002Publication date: January 22, 2004Applicant: Applied Materials, Inc.Inventors: Hua Chung, Hongbin Fang, Ken K. Lai, Jeong Soo Byun, Alfred W. Mak, Michael X. Yang, Ming Xi, Moris Kori, Xinliang Lu, Ping Jian
-
Publication number: 20030127043Abstract: A method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.Type: ApplicationFiled: July 12, 2002Publication date: July 10, 2003Applicant: Applied Materials, Inc.Inventors: Xinliang Lu, Ping Jian, John Hyun Yoo, Ken Kaung Lai, Alfred W. Mak, Robert L. Jackson, Ming Xi
-
Publication number: 20020190379Abstract: In accordance with the present invention, a method is provided for forming an improved tungsten layer. In one embodiment, a CVD method for depositing a tungsten layer on a substrate includes forming a bilayer of titanium-nitride/titanium (TiN/Ti) over the substrate, placing the substrate in a deposition zone of a substrate processing chamber, and introducing a fluorine-free tungsten-containing precursor and a carrier gas into the deposition zone for forming a tungsten nucleation layer over the TiN/Ti bilayer. The Ti layer is between the TiN layer and the substrate. After the tungsten nucleation formation, a process gas including a tungsten-containing source and a reduction agent are introduced into the deposition zone for forming the bulk tungsten layer. In one embodiment, the fluorine-free tungsten-containing precursor includes W(CO)6, and the carrier gas is Argon.Type: ApplicationFiled: March 22, 2002Publication date: December 19, 2002Applicant: Applied Materials, Inc.Inventors: Ping Jian, Seshadri Ganguli, Karl A. Littau, Christophe Marcadal, Ling Chen
-
Patent number: 6461435Abstract: A showerhead for distributing gases in a semiconductor process chamber. In one embodiment, a showerhead comprising a perforated center portion, a mounting portion circumscribing the perforated center portion and a plurality of bosses extending from the mounting portion each having a hole disposed therethrough is provided. Another embodiment of the invention provides a showerhead that includes a mounting portion having a first side circumscribing a perforated center portion. A ring extends from the first side of the mounting portion. A plurality of mounting holes are disposed in the mounting portion radially to either side of the ring. The showerhead provides controlled thermal transfer between the showerhead and chamber lid resulting in less deposition on the showerhead.Type: GrantFiled: June 22, 2000Date of Patent: October 8, 2002Assignee: Applied Materials, Inc.Inventors: Karl A. Littau, Bevan Vo, Salvador P. Umotoy, Son N. Trinh, Chien-Teh Kao, Ken Kaung Lai, Bo Zheng, Ping Jian, Siqing Lu, Anzhong Chang
-
Patent number: 6251190Abstract: A gate electrode connection structure formed by deposition of a tungsten nitride barrier layer and a tungsten plug, where the tungsten nitride and tungsten deposition are accomplished in situ in the same chemical vapor deposition (CVD) chamber. The tungsten nitride deposition is performed by plasma enhanced chemical vapor deposition (PECVD) using a plasma containing hydrogen, nitrogen and tungsten hexafluoride. Before deposition the wafer is pretreated with a hydrogen plasma to improve adhesion. The tungsten deposition process may be done by CVD using tungsten hexafluoride and hydrogen. A tungsten nucleation step is included in which a process gas including a tungsten hexafluoride, diborane and hydrogen are flowed into a deposition zone of a substrate processing chamber. Following the nucleation step, the diborane is shut off while the pressure level and other process parameters are maintained at conditions suitable for bulk deposition of tungsten.Type: GrantFiled: September 8, 2000Date of Patent: June 26, 2001Assignee: Applied Materials, Inc.Inventors: Alfred Mak, Kevin Lai, Cissy Leung, Steve G. Ghanayem, Thomas Wendling, Ping Jian
-
Patent number: 6162715Abstract: A gate electrode connection structure formed by deposition of a tungsten nitride barrier layer and a tungsten plug, where the tungsten nitride and tungsten deposition are accomplished in situ in the same chemical vapor deposition (CVD) chamber. The tungsten nitride deposition is performed by plasma enhanced chemical vapor deposition (PECVD) using a plasma containing hydrogen, nitrogen and tungsten hexafluoride. Before deposition the wafer is pretreated with a hydrogen plasma to improve adhesion. The tungsten deposition process may be done by CVD using tungsten hexafluoride and hydrogen. A tungsten nucleation step is included in which a process gas including a tungsten hexafluoride, diborane and hydrogen are flowed into a deposition zone of a substrate processing chamber. Following the nucleation step, the diborane is shut off while the pressure level and other process parameters are maintained at conditions suitable for bulk deposition of tungsten.Type: GrantFiled: July 14, 1998Date of Patent: December 19, 2000Assignee: Applied Materials, Inc.Inventors: Alfred Mak, Kevin Lai, Cissy Leung, Steve G. Ghanayem, Thomas Wendling, Ping Jian