Patents by Inventor Ping-Jung Wu

Ping-Jung Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884912
    Abstract: A cell culture device includes a culture unit, a gas supply unit, a first pressure unit, at least one inspecting unit and a control unit. The culture unit contains a cell culture liquid. The gas supply unit, connected with the culture unit, is used for transmitting a culture gas into the culture unit. The first pressure unit, connected with the culture unit, is used for applying a pressure to the cell culture liquid in the culture unit. The at least one inspecting unit, connected with the culture unit, is used for receiving the cell culture liquid for inspection. The control unit, electrically coupled with the culture unit, the first pressure unit, the gas supply unit and the at least one inspecting unit, is used for monitoring corresponding condition parameters to determine respective operations. In addition, a cell culture method for the cell culture device is also provided.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: January 30, 2024
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Kuo-Hsing Wen, Ting-Hsuan Chen, Cheng-Tai Chen, Chien-An Chen, Su-Fung Chiu, Yung-Chi Chang, Nien-Jen Chou, Ping-Jung Wu, Shaw-Hwa Parng, Pei-Shin Jiang
  • Publication number: 20230411373
    Abstract: A semiconductor package includes a first electric integrated circuit component, a second integrated circuit component, and a first plasmonic bridge. The second electric integrated circuit component is aside the first electric integrated circuit component. The first plasmonic bridge is vertically overlapped with both the first electric integrated circuit component and the second electric integrated circuit component. The first plasmonic bridge includes a first plasmonic waveguide optically connecting the first electric integrated circuit component and the second electric integrated circuit component.
    Type: Application
    Filed: August 4, 2023
    Publication date: December 21, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Patent number: 11830861
    Abstract: A semiconductor package includes a first optical transceiver, a second optical transceiver, a third optical transceiver, and a plasmonic waveguide. The first optical transceiver, the second optical transceiver, and the third optical transceiver are stacked in sequential order. The first optical transceiver and the third optical transceiver respectively at least one optical input/output portion for transmitting and receiving an optical signal. The plasmonic waveguide includes a first segment, a second segment, and a third segment optically coupled to one another. The first segment is embedded in the first optical transceiver. The second segment extends through the second optical transceiver. The third segment is embedded in the third optical transceiver. The first segment is optically coupled to the at least one optical input/output portion of the first optical transceiver and the third segment is optically coupled to the at least one optical input/output portion of the third optical transceiver.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Publication number: 20230375783
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 11774675
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Publication number: 20230201840
    Abstract: A convective polymerase chain reaction apparatus and an optical detecting method thereof are provided. The optical detecting method includes the following steps. A substance in a tube to be tested is heated. At least two monochromatic lights are provided and are combined using a light combining element to irradiate the tube to be tested. At least two excited lights generated by exciting the substance in the tube to be tested by the at least two monochromatic lights are sensed.
    Type: Application
    Filed: December 29, 2021
    Publication date: June 29, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Chun-Chuan Lin, Hsiao-Yue Tsao, Shih-Bin Luo, Kuo-Hsing Wen, Chien-Chih Kuo, Ping-Jung Wu, Ruey-Shyan Hong, Ting-Hsuan Chen
  • Publication number: 20230035735
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 11487060
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Publication number: 20220308284
    Abstract: A semiconductor device includes a photonic die and an optical die. The photonic die includes a grating coupler and an optical device. The optical device is connected to the grating coupler to receive radiation of predetermined wavelength incident on the grating coupler. The optical die is disposed over the photonic die and includes a substrate with optical nanostructures. Positions and shapes of the optical nanostructures are such to perform an optical transformation on the incident radiation of predetermined wavelength when the incident radiation passes through an area of the substrate where the optical nanostructures are located. The optical nanostructures overlie the grating coupler so that the incident radiation of predetermined wavelength crosses the optical die where the optical nanostructures are located before reaching the grating coupler.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Jia-Xsing Li, Ping-Jung Wu, Tsang-Jiuh Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 11358137
    Abstract: A tubular structure for producing droplets and a method of using the tubular structure to produce droplets are provided. The tubular structure includes microchannel structures, and is used for droplet generation, droplet collection, nucleic acid amplification and/or in situ droplet detection, etc.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: June 14, 2022
    Assignee: Industrial Technology Research Institute
    Inventors: Shaw-Hwa Parng, Su-Jan Lee, Ping-Jung Wu, Ruey-Shyan Hong, Yu-Yin Tsai
  • Patent number: 10914895
    Abstract: A package structure including a plurality of first dies and an insulating encapsulant is provided. The plurality of first dies each include a first waveguide layer having a first waveguide path of a bent pattern, wherein the first waveguide layers of the plurality of first dies are optically coupled to each other to form an optical route. The insulating encapsulant encapsulates the plurality of first dies.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: February 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Publication number: 20210005591
    Abstract: A semiconductor package includes a first optical transceiver, a second optical transceiver, a third optical transceiver, and a plasmonic waveguide. The first optical transceiver, the second optical transceiver, and the third optical transceiver are stacked in sequential order. The first optical transceiver and the third optical transceiver respectively at least one optical input/output portion for transmitting and receiving an optical signal. The plasmonic waveguide includes a first segment, a second segment, and a third segment optically coupled to one another. The first segment is embedded in the first optical transceiver. The second segment extends through the second optical transceiver. The third segment is embedded in the third optical transceiver. The first segment is optically coupled to the at least one optical input/output portion of the first optical transceiver and the third segment is optically coupled to the at least one optical input/output portion of the third optical transceiver.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Patent number: 10797031
    Abstract: A semiconductor package includes a first optical transceiver, a second optical transceiver, a third optical transceiver, and a plasmonic waveguide. The first optical transceiver includes at least one optical input/output portion for transmitting and receiving optical signal. The second optical transceiver is stacked on the first optical transceiver. The third optical transceiver includes at least one optical input/output portion for transmitting and receiving optical signal. The third optical transceiver is stacked on the second optical transceiver. The plasmonic waveguide penetrates through the second optical transceiver and optically couples the at least one optical input/output portion of the first optical transceiver and the at least one optical input/output portion of the third optical transceiver.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: October 6, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Publication number: 20200261903
    Abstract: A tubular structure for producing droplets and a method of using the tubular structure to produce droplets are provided. The tubular structure includes microchannel structures, and is used for droplet generation, droplet collection, nucleic acid amplification and/or in situ droplet detection, etc.
    Type: Application
    Filed: December 26, 2019
    Publication date: August 20, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Shaw-Hwa Parng, Su-Jan Lee, Ping-Jung Wu, Ruey-Shyan Hong, Yu-Yin Tsai
  • Publication number: 20200208096
    Abstract: A cell culture device includes a culture unit, a gas supply unit, a first pressure unit, at least one inspecting unit and a control unit. The culture unit contains a cell culture liquid. The gas supply unit, connected with the culture unit, is used for transmitting a culture gas into the culture unit. The first pressure unit, connected with the culture unit, is used for applying a pressure to the cell culture liquid in the culture unit. The at least one inspecting unit, connected with the culture unit, is used for receiving the cell culture liquid for inspection. The control unit, electrically coupled with the culture unit, the first pressure unit, the gas supply unit and the at least one inspecting unit, is used for monitoring corresponding condition parameters to determine respective operations. In addition, a cell culture method for the cell culture device is also provided.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 2, 2020
    Inventors: KUO-HSING WEN, TING-HSUAN CHEN, CHENG-TAI CHEN, CHIEN-AN CHEN, SU-FUNG CHIU, YUNG-CHI CHANG, NIEN-JEN CHOU, PING-JUNG WU, SHAW-HWA PARNG, PEI-SHIN JIANG
  • Patent number: 10620097
    Abstract: A biological sample processing device includes a base, a purification unit, a metering unit and a first tube. The purification unit is disposed on the base and is configured to purify a sample. The metering unit is disposed on the base and has an inlet, at least one metering trough and an overflow trough. The inlet is connected to the purification unit via the first tube, and the metering trough is connected between the inlet and the overflow trough. The sample from the purification unit is configured to enter the metering unit through the inlet to be moved toward the metering trough, and to be moved toward the overflow trough after the metering trough is filled with the sample.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: April 14, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-An Chen, Wen-Ching Lee, Tzu-Hui Wu, Pei-Shin Jiang, Ping-Jung Wu, Ruey-Shyan Hong, Hsiao-Jou Chang, Chun-Chieh Huang, Ting-Hsuan Chen, Chih-Lung Lin
  • Publication number: 20200098736
    Abstract: A semiconductor package includes a first optical transceiver, a second optical transceiver, a third optical transceiver, and a plasmonic waveguide. The first optical transceiver includes at least one optical input/output portion for transmitting and receiving optical signal. The second optical transceiver is stacked on the first optical transceiver. The third optical transceiver includes at least one optical input/output portion for transmitting and receiving optical signal. The third optical transceiver is stacked on the second optical transceiver. The plasmonic waveguide penetrates through the second optical transceiver and optically couples the at least one optical input/output portion of the first optical transceiver and the at least one optical input/output portion of the third optical transceiver.
    Type: Application
    Filed: September 20, 2018
    Publication date: March 26, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Publication number: 20200091124
    Abstract: A package structure including a plurality of first dies and an insulating encapsulant is provided. The plurality of first dies each include a first waveguide layer having a first waveguide path of a bent pattern, wherein the first waveguide layers of the plurality of first dies are optically coupled to each other to form an optical route. The insulating encapsulant encapsulates the plurality of first dies.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Patent number: 10333623
    Abstract: An optical transceiver including a photonic integrated circuit component, an electric integrated circuit component and an insulating encapsulant is provided. The photonic integrated circuit component includes at least one optical input/output portion configured to transmit and receive optical signal. The electric integrated circuit component is disposed on and electrically connected to the photonic integrated circuit component. The insulating encapsulant covers the at least one optical input/output portion of the photonic integrated circuit component. The insulating encapsulant laterally encapsulates the electric integrated circuit component. The insulating encapsulant is optically transparent to the optical signal.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: June 25, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Publication number: 20180164196
    Abstract: A biological sample processing device includes a base, a purification unit, a metering unit and a first tube. The purification unit is disposed on the base and is configured to purify a sample. The metering unit is disposed on the base and has an inlet, at least one metering trough and an overflow trough. The inlet is connected to the purification unit via the first tube, and the metering trough is connected between the inlet and the overflow trough. The sample from the purification unit is configured to enter the metering unit through the inlet to be moved toward the metering trough, and to be moved toward the overflow trough after the metering trough is filled with the sample.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 14, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chien-An Chen, Wen-Ching Lee, Tzu-Hui Wu, Pei-Shin Jiang, Ping-Jung Wu, Ruey-Shyan Hong, Hsiao-Jou Chang, Chun-Chieh Huang, Ting-Hsuan Chen, Chih-Lung Lin