Patents by Inventor Ping-Jung Yang

Ping-Jung Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120281
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Application
    Filed: November 30, 2023
    Publication date: April 11, 2024
    Inventor: Ping-Jung Yang
  • Patent number: 11942145
    Abstract: The present disclosure describes a method for memory cell placement. The method can include placing a memory cell region in a layout area and placing a well pick-up region and a first power supply routing region along a first side of the memory cell region. The method also includes placing a second power supply routing region and a bitline jumper routing region along a second side of the memory cell region, where the second side is on an opposite side to that of the first side. The method further includes placing a device region along the second side of the memory cell region, where the bitline jumper routing region is between the second power supply routing region and the device region.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chuan Yang, Jui-Wen Chang, Feng-Ming Chang, Kian-Long Lim, Kuo-Hsiu Hsu, Lien Jung Hung, Ping-Wei Wang
  • Patent number: 11894306
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Grant
    Filed: November 12, 2022
    Date of Patent: February 6, 2024
    Inventor: Ping-Jung Yang
  • Publication number: 20230073104
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Application
    Filed: November 12, 2022
    Publication date: March 9, 2023
    Inventor: Ping-Jung Yang
  • Patent number: 11538763
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Grant
    Filed: July 11, 2021
    Date of Patent: December 27, 2022
    Inventor: Ping-Jung Yang
  • Publication number: 20220384326
    Abstract: A connector may include: a first substrate having a top surface, a bottom surface opposite to the top surface of the top substrate and a side surface joining an edge of the top surface of the first substrate and joining an edge of the bottom surface of the first substrate; a second substrate having a top surface, a bottom surface opposite to the top surface of the second substrate and a side surface joining an edge of the top surface of the second substrate and joining an edge of the bottom surface of the second substrate, wherein the side surface of the second substrate faces the side surface of the first substrate, wherein the top surfaces of the first and second substrates are coplanar with each other at a top of the connector and the bottom surfaces of the first and second substrates are coplanar with each other at a bottom of the connector; and a plurality of metal traces between, in a first horizontal direction, the side surfaces of the first and second substrates, wherein each of the plurality of metal
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Inventors: Ping-Jung Yang, Mou-Shiung Lin, Jin-Yuan Lee, Hsin-Jung Lo, Chiu-Ming Chou
  • Publication number: 20220223494
    Abstract: A micro heat transfer component includes a bottom metal plate; a top metal plate; a plurality of sidewalls each having a top end joining the top metal plate and a bottom end joining the bottom metal plate, wherein the top and bottom metal plates and the sidewalls form a chamber in the micro heat transfer component; a plurality of metal posts in the chamber and between the top and bottom metal plates, wherein each of the metal posts has a top end joining the top metal plate and a bottom end joining the bottom metal plate; a metal layer in the chamber, between the top and bottom metal plates and intersecting each of the metal posts, wherein a plurality of openings are in the metal layer, wherein a first space in the chamber is between the metal layer and bottom metal plate and a second space in the chamber is between the metal layer and top metal plate; and a liquid in the first space in the chamber.
    Type: Application
    Filed: January 8, 2022
    Publication date: July 14, 2022
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin, Ping-Jung Yang
  • Publication number: 20210335714
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Application
    Filed: July 11, 2021
    Publication date: October 28, 2021
    Inventor: Ping-Jung Yang
  • Patent number: 11107768
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Grant
    Filed: January 26, 2020
    Date of Patent: August 31, 2021
    Inventor: Ping-Jung Yang
  • Publication number: 20200161245
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Application
    Filed: January 26, 2020
    Publication date: May 21, 2020
    Inventor: Ping-Jung Yang
  • Patent number: 10622310
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Grant
    Filed: September 11, 2016
    Date of Patent: April 14, 2020
    Inventor: Ping-Jung Yang
  • Patent number: 10453819
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Grant
    Filed: September 23, 2018
    Date of Patent: October 22, 2019
    Inventor: Ping-Jung Yang
  • Publication number: 20190027459
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Application
    Filed: September 23, 2018
    Publication date: January 24, 2019
    Inventor: Ping-Jung Yang
  • Patent number: 10096565
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: October 9, 2018
    Inventor: Ping-Jung Yang
  • Publication number: 20170207188
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Application
    Filed: April 1, 2017
    Publication date: July 20, 2017
    Inventor: Ping-Jung Yang
  • Patent number: 9615453
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 4, 2017
    Inventor: Ping-Jung Yang
  • Patent number: 9612615
    Abstract: Integrated circuit chips and chip packages are disclosed that include an over-passivation scheme at a top of the integrated circuit chip and a bottom scheme at a bottom of the integrated circuit chip using a top post-passivation technology and a bottom structure technology. The integrated circuit chips can be connected to an external circuit or structure, such as ball-grid-array (BGA) substrate, printed circuit board, semiconductor chip, metal substrate, glass substrate or ceramic substrate, through the over-passivation scheme or the bottom scheme. Related fabrication techniques are described.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: April 4, 2017
    Assignee: QUALCOMM INCORPORATED
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Hsin-Jung Lo, Ping-Jung Yang, Te-Sheng Liu
  • Publication number: 20170047313
    Abstract: A display device comprises a display panel substrate and a glass substrate over said display panel substrate, wherein said display panel substrate comprises multiple contact pads, a display area, a first boundary, a second boundary, a third boundary and a fourth boundary, wherein said display area comprises a first edge, a second edge, a third edge and a fourth edge, wherein said first boundary is parallel to said third boundary and said first and third edges, wherein said second boundary is parallel to said fourth boundary and said second and fourth edges, wherein a first least distance between said first boundary and said first edge, wherein a second least distance between said second boundary and said second edge, a third least distance between said third boundary and said third edge, a fourth distance between said fourth boundary and said fourth edge, and wherein said first, second, third and fourth least distances are smaller than 100 micrometers, and wherein said glass substrate comprising multiple meta
    Type: Application
    Filed: September 11, 2016
    Publication date: February 16, 2017
    Inventor: Ping-Jung Yang
  • Patent number: 8837872
    Abstract: A device is described which includes a waveguide structure for signal transmission and power/ground delivery The waveguide structure includes a signal transmission part for transmitting an optical signal from an illuminant device to a detector. The signal transmission part may include transparent polymer, diamond or glass. The signal transmission part is used for a waveguide. The waveguide structure further includes a power/ground delivery part surrounding the signal transmission part. The power/ground delivery part is composed of at least one metal layer. Thus, the waveguide structure can provide an optical-signal transmission with high speed and high volume through the signal transmission part, while a stable power or ground reference can be provided to multiple units through the power/ground delivery part.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: September 16, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Ping-Jung Yang, Hsin-Jung Lo, Te-Sheng Liu
  • Publication number: 20140085842
    Abstract: A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Inventor: Ping-Jung Yang