Patents by Inventor Ping T. Tang

Ping T. Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250117874
    Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.
    Type: Application
    Filed: October 7, 2024
    Publication date: April 10, 2025
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Publication number: 20250094170
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Application
    Filed: September 30, 2024
    Publication date: March 20, 2025
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 12217053
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: February 4, 2025
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20250005703
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.
    Type: Application
    Filed: July 15, 2024
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Abhishek R. Appu, Altug Koker, Linda L. Hurd, Dukhwan Kim, Mike B. Macpherson, John C. Weast, Feng Chen, Farshad Akhbari, Narayan Srinivasa, Nadathur Rajagopalan Satish, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman
  • Patent number: 12175252
    Abstract: One embodiment provides for a graphics processing unit (GPU) to accelerate machine learning operations, the GPU comprising an instruction cache to store a first instruction and a second instruction, the first instruction to cause the GPU to perform a floating-point operation, including a multi-dimensional floating-point operation, and the second instruction to cause the GPU to perform an integer operation; and a general-purpose graphics compute unit having a single instruction, multiple thread architecture, the general-purpose graphics compute unit to concurrently execute the first instruction and the second instruction.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: December 24, 2024
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Tatiana Shpeisman, Joydeep Ray, Ping T. Tang, Michael Strickland, Xiaoming Chen, Anbang Yao, Ben J. Ashbaugh, Linda L. Hurd, Liwei Ma
  • Patent number: 12148063
    Abstract: One embodiment provides a multi-chip module accelerator usable to execute tensor data processing operations a multi-chip module. The multi-chip module may include a memory stack including multiple memory dies and parallel processor circuitry communicatively coupled to the memory stack. The parallel processor circuitry may include multiprocessor cores to execute matrix multiplication and accumulate operations. The matrix multiplication and accumulate operations may include floating-point operations that are configurable to include two-dimensional matrix multiply and accumulate operations involving inputs that have differing floating-point precisions. The floating-point operations may include a first operation at a first precision and a second operation at a second precision. The first operation may include a multiply having at least one 16-bit floating-point input and the second operation may include an accumulate having a 32-bit floating-point input.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: November 19, 2024
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Patent number: 12141578
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 12, 2024
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 12056788
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: August 6, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek R. Appu, Altug Koker, Linda L. Hurd, Dukhwan Kim, Mike B. Macpherson, John C. Weast, Feng Chen, Farshad Akhbari, Narayan Srinivasa, Nadathur Rajagopalan Satish, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman
  • Publication number: 20240256825
    Abstract: A library of machine learning primitives is provided to optimize a machine learning model to improve the efficiency of inference operations. In one embodiment a trained convolutional neural network (CNN) model is processed into a trained CNN model via pruning, convolution window optimization, and quantization.
    Type: Application
    Filed: February 7, 2024
    Publication date: August 1, 2024
    Applicant: Intel Corporation
    Inventors: Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
  • Patent number: 12050984
    Abstract: One embodiment provides for a general-purpose graphics processing unit including a scheduler to schedule multiple matrix operations for execution by a general-purpose graphics processing unit. The multiple matrix operations are determined based on a single machine learning compute instruction. The single machine learning compute instruction is a convolution instruction and the multiple matrix operations are associated with a convolution operation.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: July 30, 2024
    Assignee: Intel Corporation
    Inventors: Rajkishore Barik, Elmoustapha Ould-Ahmed-Vall, Xiaoming Chen, Dhawal Srivastava, Anbang Yao, Kevin Nealis, Eriko Nurvitadhi, Sara S. Baghsorkhi, Balaji Vembu, Tatiana Shpeisman, Ping T. Tang
  • Patent number: 12039331
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: July 16, 2024
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 12020135
    Abstract: A library of machine learning primitives is provided to optimize a machine learning model to improve the efficiency of inference operations. In one embodiment a trained convolutional neural network (CNN) model is processed into a trained CNN model via pruning, convolution window optimization, and quantization.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: June 25, 2024
    Assignee: Intel Corporation
    Inventors: Liwei Ma, Elmoustapha Ould-Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
  • Publication number: 20240184572
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Application
    Filed: December 4, 2023
    Publication date: June 6, 2024
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 11948224
    Abstract: One embodiment provides an apparatus comprising a memory stack including multiple memory dies and a parallel processor including a plurality of multiprocessors. Each multiprocessor has a single instruction, multiple thread (SIMT) architecture, the parallel processor coupled to the memory stack via one or more memory interfaces. At least one multiprocessor comprises a multiply-accumulate circuit to perform multiply-accumulate operations on matrix data in a stage of a neural network implementation to produce a result matrix comprising a plurality of matrix data elements at a first precision, precision tracking logic to evaluate metrics associated with the matrix data elements and indicate if an optimization is to be performed for representing data at a second stage of the neural network implementation, and a numerical transform unit to dynamically perform a numerical transform operation on the matrix data elements based on the indication to produce transformed matrix data elements at a second precision.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 2, 2024
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Patent number: 11934934
    Abstract: An apparatus to facilitate optimization of a convolutional neural network (CNN) is disclosed. The apparatus includes optimization logic to receive a CNN model having a list of instructions and including pruning logic to optimize the list of instructions by eliminating branches in the list of instructions that comprise a weight value of 0.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: March 19, 2024
    Assignee: Intel Corporation
    Inventors: Liwei Ma, Elmoustapha Ould- Ahmed-Vall, Barath Lakshmanan, Ben J. Ashbaugh, Jingyi Jin, Jeremy Bottleson, Mike B. Macpherson, Kevin Nealis, Dhawal Srivastava, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Altug Koker, Abhishek R. Appu
  • Publication number: 20240005136
    Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: July 12, 2023
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20240004829
    Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.
    Type: Application
    Filed: July 12, 2023
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu
  • Publication number: 20230401668
    Abstract: One embodiment provides a general-purpose graphics processing unit comprising a dynamic precision floating-point unit including a control unit having precision tracking hardware logic to track an available number of bits of precision for computed data relative to a target precision, wherein the dynamic precision floating-point unit includes computational logic to output data at multiple precisions.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Applicant: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Anbang Yao, Kevin Nealis, Xiaoming Chen, Altug Koker, Abhishek R. Appu, John C. Weast, Mike B. Macpherson, Dukhwan Kim, Linda L. Hurd, Ben J. Ashbaugh, Barath Lakshmanan, Liwei Ma, Joydeep Ray, Ping T. Tang, Michael S. Strickland
  • Publication number: 20230315481
    Abstract: Described herein is a general-purpose graphics processing unit including a multiprocessor having a single instruction, multiple thread, SIMT, architecture. The multiprocessor comprises multiple sets of compute units each having a first logic unit configured to perform floating-point operations and a second logic unit configured to perform integer operations, with a thread of the floating-point instruction being executed in parallel with a thread of the integer instruction.
    Type: Application
    Filed: May 4, 2023
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: ELMOUSTAPHA OULD-AHMED-VALL, BARATH LAKSHMANAN, TATIANA SHPEISMAN, Joydeep Ray, Ping T. Tang, Michael Strickland, Xiaoming Chen, Anbang Yao, Ben J. Ashbaugh, Linda L. Hurd, Liwei Ma
  • Patent number: 11748606
    Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: September 5, 2023
    Assignee: INTEL CORPORATION
    Inventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev S. Jahagirdar