Patents by Inventor Pingshan Luan

Pingshan Luan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096640
    Abstract: A method of processing a substrate that includes: flowing nitrogen-containing (N-containing) gas, dioxygen (O2), a noble gas, and a fluorocarbon into the plasma processing chamber, the plasma processing chamber configured to hold a substrate including a dielectric layer as etch target and a patterned hardmask over the target layer; while flowing the gases, generating a fluorine-rich and nitrogen-deficient plasma in the plasma processing chamber, fluorine-rich and nitrogen-deficient plasma being made of more number of fluorine species than nitrogen species; and forming a high aspect ratio feature by exposing the substrate to the fluorine-rich and nitrogen-deficient plasma to etch a recess in the dielectric layer.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Applicant: Tokyo Electron Limited
    Inventors: Pingshan Luan, Matthew Ocana, Andrew Metz
  • Patent number: 11837467
    Abstract: In certain embodiments, a method of processing a semiconductor substrate includes positioning a semiconductor substrate in a plasma chamber of a plasma tool. The semiconductor substrate includes a film stack that includes silicon layers and germanium-containing layers in an alternating stacked arrangement, with at least two silicon layers and at least two germanium-containing layers. The method includes exposing, in a first plasma step executed in the plasma chamber, the film stack to a first plasma. The first plasma is generated from first gases that include nitrogen gas, hydrogen gas, and fluorine gas. The method includes exposing, in a second plasma step executed in the plasma chamber, the film stack to a second plasma. The second plasma is generated from second gases comprising fluorine gas and oxygen gas. The second plasma selectively etches the silicon layers.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: December 5, 2023
    Assignee: Toyko Electron Limited
    Inventors: Pingshan Luan, Christopher Catano, Aelan Mosden
  • Publication number: 20230360921
    Abstract: Selective protection and etching is provided which can be utilized in etching of a silicon containing layer with respect to a Ge or SiGe layer. In an example, the layers are stacked, and an oxide is on a side surface of the layers. A treatment is utilized to provide a modified surface or termination surface on side surfaces of the Ge/SiGe layers, and a heat treatment is provided after the gas treatment to selectively sublimate layer portions on side surfaces of the Si containing layers. The gas treatment and heat treatment are preferably in non-plasma environments. Thereafter, a plasma process is performed to form a protective layer on the Ge containing layers, and the Si containing layers can be etched with the plasma.
    Type: Application
    Filed: October 12, 2022
    Publication date: November 9, 2023
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Matthew FLAUGH, Jonathan HOLLIN, Subhadeep KAL, Pingshan LUAN, Hamed HAJIBABAEINAJAFABADI, Yu-Hao TSAI, Aelan MOSDEN
  • Publication number: 20230317465
    Abstract: A method of processing a substrate that includes: positioning a substrate in a plasma processing chamber, the substrate including a layer stack of alternating layers of silicon (Si) layers and silicon-germanium (SiGe) layers, the substrate including a recess that exposes sidewalls of the Si layers and sidewalls of the SiGe layers; flowing a first process gas into the plasma processing chamber; while flowing the first process gas, pulsing a second process gas into the plasma processing chamber at a pulsing frequency; while flowing the first process gas and pulsing the second process gas, applying power to a source electrode and a bias electrode of the plasma processing chamber to generate a plasma in the plasma processing chamber; and exposing the substrate to the plasma to laterally etch a portion of the Si layers selectively to the SiGe layers and form indents between the SiGe layers.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 5, 2023
    Inventors: Hamed Hajibabaeinajafabadi, Pingshan Luan, Aelan Mosden, Sergey Voronin
  • Publication number: 20230094212
    Abstract: A method of processing a substrate that includes: flowing a first unsaturated fluorocarbon, a saturated fluorocarbon, a first noble gas, and dioxygen into a plasma chamber; while flowing these gases, generating a plasma in the plasma chamber; and patterning, with the plasma, a material layer on the substrate.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Pingshan Luan, Andrew Metz
  • Patent number: 11538690
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes receiving a semiconductor substrate that includes a film stack. The film stack includes a first silicon layer, a second silicon layer, and a first germanium-containing layer positioned between the first silicon layer and the second silicon layer. The method further includes selectively etching the first germanium-containing layer by exposing the film stack to a plasma that includes fluorine agents, nitrogen agents, and hydrogen agents. The plasma etches the first germanium-containing layer and causes a passivation layer to be formed on exposed surfaces of the first silicon layer and the second silicon layer to inhibit etching of the first silicon layer and the second silicon layer during exposure of the film stack to the plasma.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: December 27, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Pingshan Luan, Aelan Mosden
  • Publication number: 20220351970
    Abstract: In certain embodiments, a method of processing a semiconductor substrate includes positioning a semiconductor substrate in a plasma chamber of a plasma tool. The semiconductor substrate includes a film stack that includes silicon layers and germanium-containing layers in an alternating stacked arrangement, with at least two silicon layers and at least two germanium-containing layers. The method includes exposing, in a first plasma step executed in the plasma chamber, the film stack to a first plasma. The first plasma is generated from first gases that include nitrogen gas, hydrogen gas, and fluorine gas. The method includes exposing, in a second plasma step executed in the plasma chamber, the film stack to a second plasma. The second plasma is generated from second gases comprising fluorine gas and oxygen gas. The second plasma selectively etches the silicon layers.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Pingshan Luan, Christopher Catano, Aelan Mosden
  • Patent number: 11482423
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes receiving a semiconductor substrate that includes a film stack. The film stack includes first and second germanium-containing layers and a first silicon layer positioned between the first and second germanium-containing layers. The method includes selectively etching the first silicon layer by exposing the film stack to a plasma that includes fluorine agents and nitrogen agents. The plasma etches the first silicon layer, and causes a passivation layer to be formed on exposed surfaces of the first and second germanium-containing layers to inhibit etching of the first and second germanium-containing layers during exposure of the film stack to the plasma.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 25, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Pingshan Luan, Aelan Mosden
  • Patent number: 11424120
    Abstract: In certain embodiments, a method of processing a semiconductor substrate includes positioning a semiconductor substrate in a plasma chamber of a plasma tool. The semiconductor substrate includes a film stack that includes silicon layers and germanium-containing layers in an alternating stacked arrangement, with at least two silicon layers and at least two germanium-containing layers. The method includes exposing, in a first plasma step executed in the plasma chamber, the film stack to a first plasma. The first plasma is generated from first gases that include nitrogen gas, hydrogen gas, and fluorine gas. The method includes exposing, in a second plasma step executed in the plasma chamber, the film stack to a second plasma. The second plasma is generated from second gases comprising fluorine gas and oxygen gas. The second plasma selectively etches the silicon layers.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: August 23, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Pingshan Luan, Christopher Catano, Aelan Mosden
  • Publication number: 20220254645
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes receiving a semiconductor substrate that includes a film stack. The film stack includes a first silicon layer, a second silicon layer, and a first germanium-containing layer positioned between the first silicon layer and the second silicon layer. The method further includes selectively etching the first germanium-containing layer by exposing the film stack to a plasma that includes fluorine agents, nitrogen agents, and hydrogen agents. The plasma etches the first germanium-containing layer and causes a passivation layer to be formed on exposed surfaces of the first silicon layer and the second silicon layer to inhibit etching of the first silicon layer and the second silicon layer during exposure of the film stack to the plasma.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Pingshan Luan, Aelan Mosden
  • Publication number: 20220238344
    Abstract: In certain embodiments, a method for processing a semiconductor substrate includes receiving a semiconductor substrate that includes a film stack. The film stack includes first and second germanium-containing layers and a first silicon layer positioned between the first and second germanium-containing layers. The method includes selectively etching the first silicon layer by exposing the film stack to a plasma that includes fluorine agents and nitrogen agents. The plasma etches the first silicon layer, and causes a passivation layer to be formed on exposed surfaces of the first and second germanium-containing layers to inhibit etching of the first and second germanium-containing layers during exposure of the film stack to the plasma.
    Type: Application
    Filed: January 28, 2021
    Publication date: July 28, 2022
    Inventors: Pingshan Luan, Aelan Mosden
  • Publication number: 20220238309
    Abstract: In certain embodiments, a method of processing a semiconductor substrate includes positioning a semiconductor substrate in a plasma chamber of a plasma tool. The semiconductor substrate includes a film stack that includes silicon layers and germanium-containing layers in an alternating stacked arrangement, with at least two silicon layers and at least two germanium-containing layers. The method includes exposing, in a first plasma step executed in the plasma chamber, the film stack to a first plasma. The first plasma is generated from first gases that include nitrogen gas, hydrogen gas, and fluorine gas. The method includes exposing, in a second plasma step executed in the plasma chamber, the film stack to a second plasma. The second plasma is generated from second gases comprising fluorine gas and oxygen gas. The second plasma selectively etches the silicon layers.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 28, 2022
    Inventors: Pingshan Luan, Christopher Catano, Aelan Mosden