Patents by Inventor Pinyen Lin

Pinyen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200335340
    Abstract: A method of manufacturing a semiconductor device including operations of forming a first hard mask over an underlying layer on a substrate by a photolithographic and etching method, forming a sidewall spacer pattern having a first sidewall portion and a second sidewall portion on opposing sides of the first hard mask, etching the first sidewall portion, etching the first hard mask and leaving the second sidewall portion bridging a gap of the etched first hard mask, and processing the underlying layer using the second hard mask.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Shih-Chun HUANG, Chiu-Hsiang CHEN, Ya-Wen YEH, Yu-Tien SHEN, Po-Chin CHANG, Chien Wen LAI, Wei-Liang LIN, Ya Hui CHANG, Yung-Sung YEN, Li-Te LIN, Pinyen LIN, Ru-Gun LIU, Chin-Hsiang LIN
  • Patent number: 10790195
    Abstract: A method includes following steps. A semiconductor fin is formed on a substrate and extends in a first direction. A source/drain region is formed on the semiconductor fin and a first interlayer dielectric (ILD) layer over the source/drain region. A gate stack is formed across the semiconductor fin and extends in a second direction substantially perpendicular to the first direction. A patterned mask having a first opening is formed over the first ILD layer. A protective layer is formed in the first opening using a deposition process having a faster deposition rate in the first direction than in the second direction. After forming the protective layer, the first opening is elongated in the second direction. A second opening is formed in the first ILD layer and under the elongated first opening. A conductive material is formed in the second opening.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Chin Chang, Li-Te Lin, Pinyen Lin
  • Publication number: 20200294851
    Abstract: A semiconductor structure includes a semiconductor substrate, a gate structure, an etch stop layer, a dielectric structure, and a conductive material. The gate structure is on the semiconductor substrate. The etch stop layer is over the gate structure. The dielectric structure is over the etch stop layer, in which the dielectric structure has a ratio of silicon to nitrogen varying from a middle layer of the dielectric structure to a bottom layer of the dielectric structure. The conductive material extends through the dielectric structure.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chang SUN, Po-Chin CHANG, Akira MINEJI, Zi-Wei FANG, Pinyen LIN
  • Patent number: 10777455
    Abstract: A method for forming a semiconductor device structure is provided. A gate structure and a source/drain contact structure are formed over a substrate. The gate structure is covered with a capping layer. The capping layer and the source/drain contact structure are successively covered with a first insulating layer and a second insulating layer. A via opening is formed in the second insulating layer to expose the first insulating layer above the source/drain contact structure. The exposed first insulating layer is recessed using a first etching gas mixture including an oxygen gas, to leave a portion of the first insulating layer. The left portion of the first insulating layer using a second etching gas mixture including a hydrogen gas, to expose the source/drain contact structure. A conductive material is formed in the via opening to electrically connect the source/drain contact structure.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jui Huang, Li-Te Lin, Pinyen Lin
  • Patent number: 10755968
    Abstract: A method is provided. A sacrificial layer is formed over a semiconductor substrate. An etching process is performed to form an opening in the sacrificial layer. The etching process includes a first cycle and a second cycle performed after the first cycle, and each of the first cycle and the second cycle includes applying a passivation gas and an etchant gas over the sacrificial layer, and performing an ionized gas bombardment on the sacrificial layer after applying the passivation gas and the etchant gas over the sacrificial layer. The passivation gas is applied at a first flow rate in the first cycle and is applied at a second flow rate in the second cycle, and the first flow rate is higher than the second flow rate.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Shan Chen, Chan-Syun David Yang, Li-Te Lin, Pinyen Lin
  • Patent number: 10741671
    Abstract: A method for manufacturing a semiconductor device, includes: forming a dummy gate structure on a semiconductor substrate; forming a plurality of gate spacers on opposite sidewalls of the dummy gate structure; removing the dummy gate structure from the semiconductor substrate; forming a metal gate electrode on the semiconductor substrate and between the gate spacers; and performing a plasma etching process to the metal gate electrode, wherein the plasma etching process comprises performing in sequence a first non-zero bias etching step and a first zero bias etching step.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Chen Lo, Li-Te Lin, Pinyen Lin
  • Publication number: 20200243336
    Abstract: A directional patterning method includes following steps. A substrate is provided with a mask layer thereon, and the mask layer has at least one opening pattern therein. A cyclic deposition and etching process is performed to increase a length of the at least one opening pattern.
    Type: Application
    Filed: January 27, 2019
    Publication date: July 30, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chin Chang, Li-Te Lin, Ru-Gun Liu, Wei-Liang Lin, Pinyen Lin, Yu-Tien Shen, Ya-Wen Yeh
  • Publication number: 20200243385
    Abstract: A method for forming a semiconductor device structure is provided. A gate structure and a source/drain contact structure are formed over a substrate. The gate structure is covered with a capping layer. The capping layer and the source/drain contact structure are successively covered with a first insulating layer and a second insulating layer. A via opening is formed in the second insulating layer to expose the first insulating layer above the source/drain contact structure. The exposed first insulating layer is recessed using a first etching gas mixture including an oxygen gas, to leave a portion of the first insulating layer. The left portion of the first insulating layer using a second etching gas mixture including a hydrogen gas, to expose the source/drain contact structure. A conductive material is formed in the via opening to electrically connect the source/drain contact structure.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jui HUANG, Li-Te LIN, Pinyen LIN
  • Patent number: 10707081
    Abstract: A method of manufacturing a semiconductor device including operations of forming a first hard mask over an underlying layer on a substrate by a photolithographic and etching method, forming a sidewall spacer pattern having a first sidewall portion and a second sidewall portion on opposing sides of the first hard mask, etching the first sidewall portion, etching the first hard mask and leaving the second sidewall portion bridging a gap of the etched first hard mask, and processing the underlying layer using the second hard mask.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: July 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chun Huang, Chiu-Hsiang Chen, Ya-Wen Yeh, Yu-Tien Shen, Po-Chin Chang, Chien Wen Lai, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Li-Te Lin, Pinyen Lin, Ru-Gun Liu, Chin-Hsiang Lin
  • Patent number: 10692760
    Abstract: A method for manufacturing a semiconductor structure is provided. The method includes following steps. A MEOL structure is formed on an etch stop layer. A patterned masking layer with at least one opening is formed on the MEOL structure and a first etching process is performed to form a trench in the MEOL structure. A second etching process is performed to modify at least one sidewall of the trench.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chang Sun, Po-Chin Chang, Akira Mineji, Zi-Wei Fang, Pinyen Lin
  • Publication number: 20200176320
    Abstract: A method for fabricating a semiconductor arrangement includes performing a first etching of a semiconductive structure to expose a first portion of a sidewall of a first layer adjacent the semiconductive structure. The first etching forms a first protective layer on the first portion of the sidewall of the first layer, and the first protective layer is formed from a first accumulation of by-product material formed from an etchant of the first etching interacting with the semiconductive structure. The method includes performing a first flash to remove at least some of the first protective layer.
    Type: Application
    Filed: October 1, 2019
    Publication date: June 4, 2020
    Inventors: Wei-Lun CHEN, Chao-Hsien HUANG, Li-Te LIN, Pinyen LIN
  • Publication number: 20200176323
    Abstract: A method for forming a semiconductor arrangement includes forming a first gate structure over a first active region. The first gate structure includes a first conductive layer. An etch process is performed using a process gas mixture to recess the first gate structure and define a recess. The etch process comprises a first phase to form a polymer layer over the first conductive layer and to modify a portion of the first conductive layer to form a modified portion of the first conductive layer and a second phase to remove the polymer layer and to remove the modified portion of the first conductive layer.
    Type: Application
    Filed: November 19, 2019
    Publication date: June 4, 2020
    Inventors: Yi-Chen LO, Li-Te LIN, Pinyen LIN
  • Publication number: 20200130102
    Abstract: A semiconductor fabrication apparatus includes a source chamber being operable to generate charged particles; and a processing chamber integrated with the source chamber and configured to receive the charged particles from the source chamber. The processing chamber includes a wafer stage being operable to secure and move a wafer, and a laser-charged particles interaction module that further includes a laser source to generate a first laser beam; a beam splitter configured to split the first laser beam into a second laser beam and a third laser beam; and a mirror configured to reflect the third laser beam such that the third laser beam is redirected to intersect with the second laser beam to form a laser interference pattern at a path of the charged particles, and wherein the laser interference pattern modulates the charged particles by in a micron-zone mode for processing the wafer using the modulated charged particles.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 30, 2020
    Inventors: Chansyun David Yang, Li-Te Lin, Pinyen Lin
  • Publication number: 20200127119
    Abstract: A method of fabricating a semiconductor device includes forming a structure including multiple nanowires vertically stacked above a substrate; depositing a dielectric material layer wrapping around the nanowires; performing a treatment process to a surface portion of the dielectric material layer; selectively etching the surface portion of the dielectric material layer; repeating the steps of performing the treatment process and selectively etching until the nanowires are partially exposed; and forming a gate structure engaging the nanowires.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 23, 2020
    Inventors: Han-Yu Lin, Chansyun David Yang, Tze-Chung Lin, Fang-Wei Lee, Fo-Ju Lin, Li-Te Lin, Pinyen Lin
  • Publication number: 20200105604
    Abstract: A method for FinFET fabrication includes forming at least three semiconductor fins over a substrate, wherein first, second, and third of the semiconductor fins are lengthwise substantially parallel to each other, spacing between the first and second semiconductor fins is smaller than spacing between the second and third semiconductor fins; depositing a first dielectric layer over top and sidewalls of the semiconductor fins, resulting in a trench between the second and third semiconductor fins, bottom and two opposing sidewalls of the trench being the first dielectric layer; implanting ions into one of the two opposing sidewalls of the trench by a first tilted ion implantation process; implanting ions into another one of the two opposing sidewalls of the trench by a second tilted ion implantation process; depositing a second dielectric layer into the trench, the first and second dielectric layers having different materials; and etching the first dielectric layer.
    Type: Application
    Filed: March 11, 2019
    Publication date: April 2, 2020
    Inventors: Han-Yu Lin, Yi-Ruei Jhan, Fang-Wei Lee, Tze-Chung Lin, Chao-Hsien Huang, Li-Te Lin, Pinyen Lin, Akira Mineji
  • Publication number: 20200098890
    Abstract: A method includes forming a dummy gate over a substrate. A pair of gate spacers are formed on opposite sidewalls of the dummy gate. The dummy gate is removed to form a trench between the gate spacers. A first ion beam is directed to an upper portion of the trench, while leaving a lower portion of the trench substantially free from incidence of the first ion beam. The substrate is moved relative to the first ion beam during directing the first ion beam to the trench. A gate structure is formed in the trench.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 26, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang WU, Kuo-An LIU, Chan-Lon YANG, Bharath Kumar PULICHERLA, Li-Te LIN, Chung-Cheng WU, Gwan-Sin CHANG, Pinyen LIN
  • Publication number: 20200066872
    Abstract: A method for forming a semiconductor device structure is provided. The method for forming a semiconductor device structure includes forming a fin structure over a substrate. The fin structure includes first semiconductor layers and second semiconductor layers alternately stacked. The method for forming the semiconductor device structure also includes removing the first semiconductor layers of the fin structure in a channel region thereby exposing the second semiconductor layers of the fin structure. The method for forming the semiconductor device structure also includes forming a dielectric material surrounding the second semiconductor layers, and treating a first portion of the dielectric material. The method for forming the semiconductor device structure also includes etching the first portion of the dielectric material to form gaps, and filling the gaps with a gate stack.
    Type: Application
    Filed: March 12, 2019
    Publication date: February 27, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Han-Yu LIN, Chansyun David YANG, Fang-Wei LEE, Tze-Chung LIN, Li-Te LIN, Pinyen LIN
  • Publication number: 20200043795
    Abstract: A method includes following steps. A semiconductor fin is formed on a substrate and extends in a first direction. A source/drain region is formed on the semiconductor fin and a first interlayer dielectric (ILD) layer over the source/drain region. A gate stack is formed across the semiconductor fin and extends in a second direction substantially perpendicular to the first direction. A patterned mask having a first opening is formed over the first ILD layer. A protective layer is formed in the first opening using a deposition process having a faster deposition rate in the first direction than in the second direction. After forming the protective layer, the first opening is elongated in the second direction. A second opening is formed in the first ILD layer and under the elongated first opening. A conductive material is formed in the second opening.
    Type: Application
    Filed: February 25, 2019
    Publication date: February 6, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Chin CHANG, Li-Te LIN, Pinyen LIN
  • Publication number: 20200020785
    Abstract: A method includes removing a dummy gate to leave a trench between gate spacers, forming a gate dielectric extending into the trench, depositing a metal layer over the gate dielectric, with the metal layer including a portion extending into the trench, depositing a filling region into the trench, with the metal layer have a first and a second vertical portion on opposite sides of the filling region, etching back the metal layer, with the filling region at least recessed less than the metal layer, and remaining parts of the portion of the metal layer forming a gate electrode, depositing a dielectric material into the trench, and performing a planarization to remove excess portions of the dielectric material. A portion of the dielectric material in the trench forms at least a portion of a dielectric hard mask over the gate electrode.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Po-Chin Chang, Wei-Hao Wu, Li-Te Lin, Pinyen Lin
  • Publication number: 20200006062
    Abstract: A method includes forming a gate spacer on sidewalls of a dummy gate structure disposed over a semiconductor substrate; performing a first implantation process to the gate spacer, wherein the first implantation process includes bombarding an upper portion of the gate spacer with silicon atoms; after performing the first implantation process, performing a second implantation process to the upper portion of the gate spacer, wherein the second implantation process includes bombarding the upper portion of the gate spacer with carbon atoms; and after performing the second implantation process, replacing the dummy gate structure with a high-k metal gate structure, wherein the replacing includes forming an interlayer dielectric (ILD) layer.
    Type: Application
    Filed: January 28, 2019
    Publication date: January 2, 2020
    Inventors: Yi-Ruei Jhan, Han-Yu Lin, Li-Te Lin, Pinyen Lin