Patents by Inventor Piotr J Przybyszewski

Piotr J Przybyszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9958515
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: May 1, 2018
    Assignee: Medtronic, Inc.
    Inventors: Michael L. Ellingson, Hyun J. Yoon, Piotr J. Przybyszewski, Patrick L. Parish
  • Patent number: 9205268
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 8, 2015
    Assignee: Medtronic, Inc.
    Inventors: Hyun J. Yoon, Michael L. Ellingson, Piotr J. Przybyszewski, Patrick L. Parish
  • Patent number: 9161802
    Abstract: Methods, apparatus, and systems for treating tissue located beneath a tissue surface with electromagnetic energy delivered from a treatment electrode. The treatment electrode may include a conductive layer and a plurality of openings extending through the conductive layer. The openings may vary in size or area across the conductive layer, and may vary progressively in size or area with location relative to the electrode perimeter.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: October 20, 2015
    Assignee: SOLTA MEDICAL, INC.
    Inventor: Piotr J. Przybyszewski
  • Patent number: 9014815
    Abstract: A medical device lead is presented that includes an electrode assembly having a first electrode located near a distal end of the electrode assembly and a second electrode located near a proximal end of the electrode assembly. The electrode assembly also includes a conductive elongated coupler that is electrically coupled to the first electrode and capacitively coupled to the second electrode. At low frequencies and DC (e.g., during delivery of stimulation therapy), the capacitive coupling between the conductive elongated coupler and the second electrode presents a high impedance allowing little current to be redirected from the first electrode to the second electrode. However, at high frequencies (e.g., during an MRI scan) the capacitive coupling between the conductive elongated coupler and the second electrode presents a low impedance, resulting in a significant amount of induced current being redirected to the second electrode and dissipated into bodily fluid surrounding the second electrode.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Zhongping C. Yang, Piotr J. Przybyszewski, Ben W. Herberg, Kevin R. Seifert, Dina L. Williams
  • Publication number: 20140188099
    Abstract: Methods, apparatus, and systems for treating tissue located beneath a tissue surface with electromagnetic energy delivered from a treatment electrode. The treatment electrode may include a conductive layer and a plurality of openings extending through the conductive layer. The openings may vary in size or area across the conductive layer, and may vary progressively in size or area with location relative to the electrode perimeter.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: SOLTA MEDICAL, INC.
    Inventor: Piotr J. Przybyszewski
  • Patent number: 8761886
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 24, 2014
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Patent number: 8494649
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Publication number: 20110118813
    Abstract: A medical device lead is presented that includes an electrode assembly having a first electrode located near a distal end of the electrode assembly and a second electrode located near a proximal end of the electrode assembly. The electrode assembly also includes a conductive elongated coupler that is electrically coupled to the first electrode and capacitively coupled to the second electrode. At low frequencies and DC (e.g., during delivery of stimulation therapy), the capacitive coupling between the conductive elongated coupler and the second electrode presents a high impedance allowing little current to be redirected from the first electrode to the second electrode. However, at high frequencies (e.g., during an MRI scan) the capacitive coupling between the conductive elongated coupler and the second electrode presents a low impedance, resulting in a significant amount of induced current being redirected to the second electrode and dissipated into bodily fluid surrounding the second electrode.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 19, 2011
    Inventors: Zhongping C. Yang, Piotr J. Przybyszewski, Ben W. Herberg, Kevin R. Seifert, Dina L. Williams
  • Publication number: 20110106212
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Application
    Filed: December 29, 2009
    Publication date: May 5, 2011
    Inventors: Michael L. Ellingson, Hyun J. Yoon, Piotr J. Przybyszewski, Patrick L. Parish
  • Publication number: 20110106204
    Abstract: An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
    Type: Application
    Filed: December 29, 2009
    Publication date: May 5, 2011
    Inventors: Hyun J. Yoon, Michael L. Ellingson, Piotr J. Przybyszewski, Patrick L. Parish
  • Publication number: 20110106217
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Publication number: 20110106218
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Patent number: 7016733
    Abstract: Improved telemetry antennas and methods of fabrication for an implantable medical device (IMD) for use in uplink telemetry (UT) and downlink telemetry (DT) transmissions between the IMD and an external medical device (EMD) are disclosed. A first telemetry antenna element is supported to extend in a first direction along a minor side of the IMD housing by a first header segment, and a second antenna element is supported to extend in a second direction along a second minor side of the IMD housing by a second header segment. The first and second antenna elements are supported to extend apart at substantially 90° to one another, i.e., substantially orthogonally, in substantially a common plane to optimize UT transmission and DT reception of UHF telemetry signals by at least one of the first and second antenna elements depending upon the mutual spatial orientation with the antenna elements of an EMD antenna.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: March 21, 2006
    Assignee: Medtronic, Inc.
    Inventors: Garry L. Dublin, William D. Verhoef, Rodney S. Wallace, Len D. Twetan, Eugene Kuschnir, Gregory J. Haubrich, Piotr J Przybyszewski, Christine G. Kronich, Bonnie Dougherty, legal representative, Eduardo H. Villaseca, deceased
  • Publication number: 20040215280
    Abstract: Improved telemetry antennas and methods of fabrication for an implantable medical device (IMD) for use in uplink telemetry (UT) and downlink telemetry (DT) transmissions between the IMD and an external medical device (EMD) are disclosed. A first telemetry antenna element is supported to extend in a first direction along a minor side of the IMD housing by a first header segment, and a second antenna element is supported to extend in a second direction along a second minor side of the IMD housing by a second header segment. The first and second antenna elements are supported to extend apart at substantially 90° to one another, i.e., substantially orthogonally, in substantially a common plane to optimize UT transmission and DT reception of UHF telemetry signals by at least one of the first and second antenna elements depending upon the mutual spatial orientation with the antenna elements of an EMD antenna.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Inventors: Garry L. Dublin, William D. Verhoef, Rodney S. Wallace, Len D. Twetan, Eugene Kuschnir, Gregory J. Haubrich, Piotr J. Przybyszewski, Christine G. Kronich, Eduardo H. Villaseca, Bonnie Dougherty