Patents by Inventor Po-Chin Peng

Po-Chin Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10665709
    Abstract: A semiconductor device includes a substrate, a power device, a protection circuit, a dielectric layer, a drain pad, a source pad, and a gate pad. The power device and the protection circuit are disposed on the substrate. The power device includes a drain electrode, a source electrode, and a gate electrode. The protection circuit has a first terminal electrically connected with the source pad and a second terminal electrically connected with the gate pad. The dielectric layer is disposed on the power device and the protection circuit. The drain pad, the source pad, and the gate pad are disposed on the dielectric layer and respectively electrically connected with the drain electrode, the source electrode, and the gate electrode. At least part of the protection circuit is disposed under the source pad, the gate pad, or the drain pad.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: May 26, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Li-Fan Lin, Po-Chin Peng
  • Publication number: 20170278960
    Abstract: A semiconductor device including a substrate, a plurality of III-nitride semiconductor layers, a source electrode, a gate electrode, a drain electrode, and a doped layer. The III-nitride semiconductor layers are disposed on the substrate. A two dimensional electron gas (2DEG) channel is formed in the III-nitride semiconductor layers. The source electrode, the gate electrode, and the drain electrode are disposed on the III-nitride semiconductor layers. The gate electrode is located between the source electrode and the drain electrode. The source electrode and the drain electrode are electrically connected to the 2DEG channel. A lateral direction is defined from the source electrode to the drain electrode. The doped layer is disposed between the gate electrode and the III-nitride semiconductor layers. The doped layer includes a plurality of dopants, and a concentration of the dopants varies along the lateral direction.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 28, 2017
    Inventors: Ching-Chuan SHIUE, Po-Chin PENG, Wen-Chia LIAO, Shih-Peng CHEN
  • Publication number: 20170194477
    Abstract: A semiconductor device includes a substrate, a power device, a protection circuit, a dielectric layer, a drain pad, a source pad, and a gate pad. The power device and the protection circuit are disposed on the substrate. The power device includes a drain electrode, a source electrode, and a gate electrode. The protection circuit has a first terminal electrically connected with the source pad and a second terminal electrically connected with the gate pad. The dielectric layer is disposed on the power device and the protection circuit. The drain pad, the source pad, and the gate pad are disposed on the dielectric layer and respectively electrically connected with the drain electrode, the source electrode, and the gate electrode. At least part of the protection circuit is disposed under the source pad, the gate pad, or the drain pad.
    Type: Application
    Filed: March 24, 2017
    Publication date: July 6, 2017
    Inventors: Li-Fan LIN, Po-Chin PENG
  • Patent number: 9362381
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: June 7, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20160111519
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 21, 2016
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9252219
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 2, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9105757
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: August 11, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20150084060
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 26, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 8981429
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K. C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang
  • Publication number: 20150021615
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Application
    Filed: September 28, 2013
    Publication date: January 22, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20140159048
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Application
    Filed: May 20, 2013
    Publication date: June 12, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K.C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang