Patents by Inventor Po-Feng Tsai

Po-Feng Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230230839
    Abstract: The present disclosure describes a system and a method for an ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Application
    Filed: March 27, 2023
    Publication date: July 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung HUANG, Li-Hsin CHU, Po-Feng TSAI, Henry PENG, Kuang Huan HSU, Tsung Wei CHEN, Yung-Lin HSU
  • Patent number: 11615961
    Abstract: The present disclosure describes a system and a method for an ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: March 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung Huang, Li-Hsin Chu, Po-Feng Tsai, Henry Peng, Kuang Huan Hsu, Tsung Wei Chen, Yung-Lin Hsu
  • Publication number: 20220155180
    Abstract: A method for monitoring a transport vehicle is provided. The method includes the operations as follows. A transport vehicle is scanned by a monitor during the transport vehicle is operated on a rail to acquire a vehicle pattern of the transport vehicle. The vehicle pattern of the transport vehicle is analyzed. An abnormal transport vehicle is determined based on the vehicle pattern. The monitor is placed nearby the rail. A method for transport vehicle maintenance is also provided.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 19, 2022
    Inventors: CHUN-JUNG HUANG, KUANG HUAN HSU, JEN-TI WANG, PO-FENG TSAI, AN-SHENG CHUNG
  • Publication number: 20220076958
    Abstract: The present disclosure describes a system and a method for an ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung Huang, Li-Hsin Chu, Po-Feng Tsai, Henry Peng, Kuang Huan Hsu, Tsung Wei Chen, Yung-Lin Hsu
  • Patent number: 11195720
    Abstract: The present disclosure describes a system and a method for a ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung Huang, Li-Hsin Chu, Po-Feng Tsai, Henry Peng, Kuang Huan Hsu, Tsung Wei Chen, Yung-Lin Hsu
  • Publication number: 20200135470
    Abstract: The present disclosure describes a system and a method for a ion implantation (IMP) process. The system includes an ion implanter configured to scan an ion beam over a target for a range of angles, a tilting mechanism configured to support and tilt the target, an ion-collecting device configured to collect a distribution and a number of ejected ions from the ion beam scan over the target, and a control unit configured to adjust a tilt angle based on a correction angle determined based on the distribution and number of ejected ions.
    Type: Application
    Filed: April 11, 2019
    Publication date: April 30, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Jung HUANG, Li-Hsin CHU, Po-Feng TSAI, Henry PENG, Kuang Huan HSU, Tsung Wei CHEN, Yung-Lin HSU
  • Patent number: 10047439
    Abstract: A method and system for removing control action effects from inline measurement data for tool condition monitoring is disclosed. An exemplary method includes determining a control action effect that contributes to an inline measurement, wherein the inline measurement indicates a wafer characteristic of a wafer processed by a process tool; and evaluating the inline measurement without the control action effect contribution to determine a condition of the process tool.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 9870896
    Abstract: A system, a method, and a non-transitory computer readable storage medium for controlling an ion implanter are disclosed herein. The system includes a sample module and a control module. The sample module is configured to generate a summarized value from process data of the ion implanter, and the process data correspond to a control parameter. The control module is configured to tune a control parameter, and the control module performs an ion implantation by releasing tools of the ion implanter in accordance with the control parameter when the summarized value meets a predetermined stability requirement.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 16, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Chia-Hsing Liao, Sheng-Wei Lee, Jo-Fei Wang, Jong-I Mou
  • Patent number: 9727049
    Abstract: The present disclosure provides various methods for tool condition monitoring, including systems for implementing such monitoring. An exemplary method includes receiving data associated with a process performed on wafers by an integrated circuit manufacturing process tool; and monitoring a condition of the integrated circuit manufacturing process tool using the data. The monitoring includes evaluating the data based on an abnormality identification criterion, an abnormality filtering criterion, and an abnormality threshold to determine whether the data meets an alarm threshold. The method may further include issuing an alarm when the data meets the alarm threshold.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Tong Ho, Po-Feng Tsai, Jung-Chang Chen, Tze-Liang Lee, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 9519285
    Abstract: The present disclosure provides various methods for tuning process parameters of a process tool, including systems for implementing such tuning. An exemplary method for tuning process parameters of a process tool such that the wafers processed by the process tool exhibit desired process monitor items includes defining behavior constraint criteria and sensitivity adjustment criteria; generating a set of possible tool tuning process parameter combinations using process monitor item data associated with wafers processed by the process tool, sensitivity data associated with a sensitivity of the process monitor items to each process parameter, the behavior constraint criteria, and the sensitivity adjustment criteria; generating a set of optimal tool tuning process parameter combinations from the set of possible tool tuning process parameter combinations; and configuring the process tool according to one of the optimal tool tuning process parameter combinations.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 9349660
    Abstract: A system and method for monitoring a process tool of an integrated circuit manufacturing system are disclosed. An exemplary method includes defining zones of an integrated circuit manufacturing process tool; grouping parameters of the integrated circuit manufacturing process tool based on the defined zones; and evaluating a condition of the integrated circuit manufacturing process tool based on the grouped parameters.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 24, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 9141097
    Abstract: A method of automatically determining process parameters for processing equipment includes processing at least one first substrate in the processing equipment at a first time; and processing at least one second substrate in the processing equipment at a second time. The method includes collecting data on process monitors for the at least one first substrate; and the at least one second substrate. The method includes receiving the data by a multiple-input-multiple-output (MIMO) optimization system. The method includes revising a sensitivity matrix, by a MIMO optimizer, using the data and an adaptive-learning algorithm, wherein the adaptive-learning algorithm revises the sensitivity matrix based on a learning parameter which is related to a rate of change of the processing equipment over time. The method includes determining a set of process parameters for the processing equipment by the MIMO optimizer, wherein the MIMO optimizer uses the revised sensitivity matrix to determine the process parameters.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 22, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou
  • Publication number: 20150162166
    Abstract: A system, a method, and a non-transitory computer readable storage medium for controlling an ion implanter are disclosed herein. The system includes a sample module and a control module. The sample module is configured to generate a summarized value from process data of the ion implanter, and the process data correspond to a control parameter. The control module is configured to tune a control parameter, and the control module performs an ion implantation by releasing tools of the ion implanter in accordance with the control parameter when the summarized value meets a predetermined stability requirement.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 11, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Feng TSAI, Chia-Tong HO, Chia-Hsing LlAO, Sheng-Wei LEE, Jo-Fei WANG, Jong-I MOU
  • Patent number: 9026239
    Abstract: A method of extending advanced process control (APC) models includes constructing an APC model table including APC model parameters of a plurality of products and a plurality of work stations. The APC model table includes empty cells and cells filled with existing APC model parameters. Average APC model parameters of the existing APC model parameters are calculated, and filled into the empty cells as initial values. An iterative calculation is performed to update the empty cells with updated values.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Feng Tsai, Yen-Di Tsen, Jo Fei Wang, Jong-I Mou
  • Publication number: 20140207271
    Abstract: The present disclosure provides various methods for tuning process parameters of a process tool, including systems for implementing such tuning. An exemplary method for tuning process parameters of a process tool such that the wafers processed by the process tool exhibit desired process monitor items includes defining behavior constraint criteria and sensitivity adjustment criteria; generating a set of possible tool tuning process parameter combinations using process monitor item data associated with wafers processed by the process tool, sensitivity data associated with a sensitivity of the process monitor items to each process parameter, the behavior constraint criteria, and the sensitivity adjustment criteria; generating a set of optimal tool tuning process parameter combinations from the set of possible tool tuning process parameter combinations; and configuring the process tool according to one of the optimal tool tuning process parameter combinations.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Publication number: 20140074258
    Abstract: A method of automatically determining process parameters for processing equipment includes processing at least one first substrate in the processing equipment at a first time; and processing at least one second substrate in the processing equipment at a second time. The method includes collecting data on process monitors for the at least one first substrate; and the at least one second substrate. The method includes receiving the data by a multiple-input-multiple-output (MIMO) optimization system. The method includes revising a sensitivity matrix, by a MIMO optimizer, using the data and an adaptive-learning algorithm, wherein the adaptive-learning algorithm revises the sensitivity matrix based on a learning parameter which is related to a rate of change of the processing equipment over time. The method includes determining a set of process parameters for the processing equipment by the MIMO optimizer, wherein the MIMO optimizer uses the revised sensitivity matrix to determine the process parameters.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng TSAI, Chia-Tong HO, Sunny WU, Jo Fei WANG, Jong-I MOU
  • Publication number: 20140067324
    Abstract: The present disclosure provides various methods for tool condition monitoring, including systems for implementing such monitoring. An exemplary method includes receiving data associated with a process performed on wafers by an integrated circuit manufacturing process tool; and monitoring a condition of the integrated circuit manufacturing process tool using the data. The monitoring includes evaluating the data based on an abnormality identification criterion, an abnormality filtering criterion, and an abnormality threshold to determine whether the data meets an alarm threshold. The method may further include issuing an alarm when the data meets the alarm threshold.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Tong Ho, Po-Feng Tsai, Jung-Chang Chen, Tze-Liang Lee, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin
  • Patent number: 8606387
    Abstract: A MIMO optimizer is used to identify tunable process parameters for processing equipment.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou
  • Patent number: 8549012
    Abstract: In accordance with an embodiment, a method for exception handling comprises accessing an exception type for an exception, filtering historical data based on at least one defined criterion to provide a data train comprising data sets, assigning a weight to each data set, and providing a current control parameter. The data sets each comprise a historical condition and a historical control parameter, and the weight assigned to each data set is based on each historical condition. The current control parameter is provided using the weight and the historical control parameter for each data set.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: October 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Feng Tsai, Jin-Ning Sung, Yen-Di Tsen, Jo Fei Wang, Jong-I Mou
  • Publication number: 20130150997
    Abstract: A method and system for removing control action effects from inline measurement data for tool condition monitoring is disclosed. An exemplary method includes determining a control action effect that contributes to an inline measurement, wherein the inline measurement indicates a wafer characteristic of a wafer processed by a process tool; and evaluating the inline measurement without the control action effect contribution to determine a condition of the process tool.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou, Chin-Hsiang Lin