Patents by Inventor Po-Hsiang Lan

Po-Hsiang Lan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962441
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Patent number: 11742892
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20220360476
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Publication number: 20220263537
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Po-Hsiang LAN, Cheng-Hsiang Hsieh
  • Patent number: 11398933
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: July 26, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Patent number: 11356140
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: June 7, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20210273674
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Po-Hsiang LAN, Cheng-Hsiang HSIEH
  • Patent number: 11025294
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20210160107
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Patent number: 10911272
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: February 2, 2021
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Publication number: 20200252247
    Abstract: A multi-tap Differential Feedforward Equalizer (DFFE) configuration with both precursor and postcursor taps is provided. The DFFE has reduced noise and/or crosstalk characteristics when compared to a Feedforward Equalizer (FFE) since DFFE uses decision outputs of slicers as inputs to a finite impulse response (FIR) unlike FFE which uses actual analog signal inputs. The digital outputs of the tentative decision slicers are multiplied with tap coefficients to reduce noise. Further, since digital outputs are used as the multiplier inputs, the multipliers effectively work as adders which are less complex to implement. The decisions at the outputs of the tentative decision slicers are tentative and are used in a FIR filter to equalize the signal; the equalized signal may be provided as input to the next stage slicers. The bit-error-rate (BER) of the final stage decisions are lower or better than the BER of the previous stage tentative decisions.
    Type: Application
    Filed: January 13, 2020
    Publication date: August 6, 2020
    Inventors: Chaitanya Palusa, Rob Abbott, Wei-Li Chen, Po-Hsiang Lan, Dirk Pfaff, Cheng-Hsiang Hsieh
  • Publication number: 20200153478
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Po-Hsiang LAN, Cheng-Hsiang HSIEH
  • Patent number: 10541718
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: January 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20190173516
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a circuit is disclosed. The circuit includes an FSM. The FSM includes: a first accumulator, a second accumulator, and a third accumulator. The first accumulator is configured to receive an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle, to accumulate input phase codes for different FSM cycles, and to generate a first order phase code at each FSM cycle. The second accumulator is coupled to the first accumulator and configured to accumulate the input phase codes and first order phase codes for different FSM cycles, and to generate a second order phase code at each FSM cycle. The third accumulator is coupled to the second accumulator and configured to accumulate the input phase codes and second order phase codes for different FSM cycles, and to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 6, 2019
    Inventors: Po-Hsiang LAN, Cheng-Hsiang Hsieh
  • Patent number: 10224978
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a clock and data recovery circuit is disclosed. The circuit includes a third order digital filter, e.g. a finite state machine (FSM) that includes three accumulators connected in series. Among the three accumulators, a first accumulator receives an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle and accumulates input phase codes for different FSM cycles to generate a first order phase code at each FSM cycle; a second accumulator accumulates the input phase codes and first order phase codes for different FSM cycles to generate a second order phase code at each FSM cycle; and a third accumulator accumulates the input phase codes and second order phase codes for different FSM cycles to generate a third order phase code at each FSM cycle.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: March 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Hsiang Lan, Cheng-Hsiang Hsieh
  • Publication number: 20190058500
    Abstract: Circuits and methods for performing a clock and data recovery are disclosed. In one example, a clock and data recovery circuit is disclosed. The circuit includes a third order digital filter, e.g. a finite state machine (FSM) that includes three accumulators connected in series. Among the three accumulators, a first accumulator receives an input phase code representing a phase timing difference between a data signal and a clock signal at each FSM cycle and accumulates input phase codes for different FSM cycles to generate a first order phase code at each FSM cycle; a second accumulator accumulates the input phase codes and first order phase codes for different FSM cycles to generate a second order phase code at each FSM cycle; and a third accumulator accumulates the input phase codes and second order phase codes for different FSM cycles to generate a third order phase code at each FSM cycle.
    Type: Application
    Filed: March 28, 2018
    Publication date: February 21, 2019
    Inventors: Po-Hsiang LAN, Cheng-Hsiang HSIEH
  • Patent number: 9513646
    Abstract: A low dropout regulator and system for supplying power to a card are provided. A low dropout regulator includes a reference voltage supply circuit configured to output a reference voltage based on an input supply voltage. An error amplifier has a first input, a second input, and a single-ended output. The first input is coupled to the reference voltage, and the second input is coupled to an output node of the low dropout regulator via a first feedback resistor. A pass transistor includes a control electrode connected to the single-ended output of the error amplifier, a first electrode connected to a ground node, and a second electrode connected to the output node of the low dropout regulator. A first power supply terminal of the error amplifier is connected to the output node, and the output node provides an output voltage of the low dropout regulator that powers the error amplifier.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: December 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Po-Hsiang Lan
  • Patent number: 9502892
    Abstract: A device includes a first power transistor, a second power transistor electrically connected in series with the first power transistor, a first electrostatic discharge (ESD) detection circuit, and a first control circuit electrically connected to the first ESD detection circuit and the first power transistor.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hui Chen, Po-Hsiang Lan, Chien-Yuan Lee, Tsung-Ju Yang, Tzu-Yi Yang, Kuo-Ji Chen
  • Publication number: 20160147240
    Abstract: A low dropout regulator and system for supplying power to a card are provided. A low dropout regulator includes a reference voltage supply circuit configured to output a reference voltage based on an input supply voltage. An error amplifier has a first input, a second input, and a single-ended output. The first input is coupled to the reference voltage, and the second input is coupled to an output node of the low dropout regulator via a first feedback resistor. A pass transistor includes a control electrode connected to the single-ended output of the error amplifier, a first electrode connected to a ground node, and a second electrode connected to the output node of the low dropout regulator. A first power supply terminal of the error amplifier is connected to the output node, and the output node provides an output voltage of the low dropout regulator that powers the error amplifier.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventor: PO-HSIANG LAN
  • Publication number: 20150077886
    Abstract: A device includes a first power transistor, a second power transistor electrically connected in series with the first power transistor, a first electrostatic discharge (ESD) detection circuit, and a first control circuit electrically connected to the first ESD detection circuit and the first power transistor.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hui Chen, Po-Hsiang Lan, Chien-Yuan Lee, Tsung-Ju Yang, Tzu-Yi Yang, Kuo-Ji Chen