Patents by Inventor Po-Kai Chiu

Po-Kai Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130055
    Abstract: This disclosure relates to a combined power module that includes a base structure, a terminal structure, a second terminal, and a cover. The terminal structure includes a mount assembly and a plurality of first terminals. The mount assembly is assembled on the base structure. The first terminals are disposed on the mount assembly. The second terminal is disposed on the base structure. The cover is disposed on the base structure and covers at least part of the first terminals and at least part of the second terminal.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yuan-Cheng HUANG, I-Hung CHIANG, Ji-Yuan SYU, Hsin-Han LIN, Po-Kai CHIU, Kuo-Shu KAO
  • Patent number: 11776867
    Abstract: A chip package including a heat-dissipating device, a first thermal interface material layer disposed on the heat-dissipating device, a patterned circuit layer disposed on the first thermal interface material layer, a chip disposed on the patterned circuit layer and electrically connected to the patterned circuit layer, and an insulating encapsulant covering the chip, the patterned circuit layer, and the first thermal interface material layer is provided. The first thermal interface material layer has a thickness between 100 ?m and 300 ?m. The first thermal interface material layer is located between the patterned circuit layer and the heat-dissipating device.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: October 3, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Publication number: 20230197680
    Abstract: An integrated antenna package structure includes a first redistribution structure, a first chip, a heat dissipation structure, a second chip, and an antenna structure. The first chip is located on a first side of the first redistribution structure, and is electrically connected to the first redistribution structure. The heat dissipation structure is thermally connected to the first chip, and the first chip is located between the heat dissipation structure and the first redistribution structure. The second chip is located on a second side of the first redistribution structure opposite to the first side, and is electrically connected to the first redistribution structure. The antenna structure is electrically connected to the first redistribution structure.
    Type: Application
    Filed: December 28, 2021
    Publication date: June 22, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Po-Kai Chiu, Sheng-Tsai Wu, Yu-Min Lin, Wen-Hung Liu, Ang-Ying Lin, Chang-Sheng Chen
  • Publication number: 20220310473
    Abstract: A chip package including a heat-dissipating device, a first thermal interface material layer disposed on the heat-dissipating device, a patterned circuit layer disposed on the first thermal interface material layer, a chip disposed on the patterned circuit layer and electrically connected to the patterned circuit layer, and an insulating encapsulant covering the chip, the patterned circuit layer, and the first thermal interface material layer is provided. The first thermal interface material layer has a thickness between 100 ?m and 300 ?m. The first thermal interface material layer is located between the patterned circuit layer and the heat-dissipating device.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Patent number: 11387159
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: July 12, 2022
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Patent number: 11362014
    Abstract: A power module including a circuit board, a chip, a first heat-conduction and insulation substrate and a second heat-conduction and insulation substrate is provided. The circuit board includes a board and a metal block embedded in the board and exposed from a first surface and a second surface of the board opposite to one another. The chip is disposed on a side of the second surface of the board corresponding to the metal block, and the chip is electrically and thermally connected to the metal block. The first heat-conduction and insulation substrate is located on a side of the first surface of the board to be disposed on the circuit board. The second heat-conduction and insulation substrate is electrically and thermally connected to the chip.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 14, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Kai Liu, Yao-Shun Chen, Po-Kai Chiu
  • Publication number: 20210210407
    Abstract: A power module including a circuit board, a chip, a first heat-conduction and insulation substrate and a second heat-conduction and insulation substrate is provided. The circuit board includes a board and a metal block embedded in the board and exposed from a first surface and a second surface of the board opposite to one another. The chip is disposed on a side of the second surface of the board corresponding to the metal block, and the chip is electrically and thermally connected to the metal block. The first heat-conduction and insulation substrate is located on a side of the first surface of the board to be disposed on the circuit board. The second heat-conduction and insulation substrate is electrically and thermally connected to the chip.
    Type: Application
    Filed: May 27, 2020
    Publication date: July 8, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Kai LIU, Yao-Shun CHEN, Po-Kai CHIU
  • Publication number: 20200203246
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Patent number: 10622274
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 14, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Publication number: 20190109064
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Application
    Filed: May 11, 2018
    Publication date: April 11, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Publication number: 20160195656
    Abstract: A structure of an ultraviolet light polarization component and a manufacturing process thereof, where a multi-layer thin film structure set is plated on a transparent falt substrate, and the multi-layer structure setis composed of a low refractive index thin film layer stacked for N times and a high refractive index thin film layer. The violet light is polarized into two polarization lights through the ultraviolet light polarization component, in which the two violet lights have a polarization ratio of larger than 10, so that the technical efficacy of realization of a small volume optical component and a large incident angle of the ultraviolet light.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 7, 2016
    Inventors: Po-Kai CHIU, Chih-Hao ZENG, Don-Yau CHIANG, Chien-Yue CHEN, Chien-Nan HSIAO, Fong-Zhi CHEN
  • Publication number: 20130256262
    Abstract: An in situ manufacturing process monitoring system of extreme smooth thin film and method thereof, comprising a coating device for coating a thin film on at least one substrate during a coating process, an ion figuring device for processing a surface polishing process on the thin film, a control device electrically coupled to the coating device and the ion figuring device respectively for controlling the coating device and the ion figuring device processing the coating process and surface polishing process by adjusting at least one device parameter of the coating device and the ion figuring device, and an in situ monitoring device electrically coupled to the control device for in situ monitoring at least one optical parameter of the thin film.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 3, 2013
    Applicant: National Applied Research Laboratories
    Inventors: Chien-Nan Hsiao, Po-Kai Chiu, Da-Ren Liu, James Su, Fong-Zhi Chen
  • Publication number: 20130146134
    Abstract: The present invention discloses a solar cell with a nanolaminated transparent electrode and a method of manufacturing the same. The solar cell comprises a substrate, a first electrode layer deposited on the substrate, a photovoltaic layer deposited on the first electrode layer, and a second electrode layer deposited on the photovoltaic layer. Wherein, at least one of the first and second electrode layers is a nanolaminated transparent electrode prepared by using atomic layer deposition (ALD). The nanolaminated transparent electrode may serve as both of the transparent electrode and the anti-reflective layer and is able to maintain good transmittance in infrared wavelength.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 13, 2013
    Applicant: National Applied Research Laboratories
    Inventors: CHIEN-NAN HSIAO, Chih-Chieh Yu, Po-Kai Chiu, Chi-Chung Kei, Don-Yau Chiang
  • Patent number: 8236433
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 7, 2012
    Assignee: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20110250414
    Abstract: A novel TCO coating and its manufacturing method are disclosed. The TCO coating of the present invention consists of titanium oxide, silicon oxide and metal. The TCO coating is manufactured according to electromagnetic field simulation software basing on the Maxwell Equations. Because the manufacturing method (including steam plating and sputter plating) of the present invention may be carried out under the room temperature, base boards that are made of polymer and that can not withstand high temperatures may be used and hence base boards may have wider applications. Also, less time is needed in the production, production cost is lowered and mass-production may be achieved.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Applicant: INSTRUMENT TECHNOLOGY RESEARCH CENTER, NATIONAL APPLIED RESEARCH LABORATORY
    Inventors: Po-Kai Chiu, Shu-Te Ho, Bo-Heng Liou, Chien-Nan Hsiao, Wen-Hao Cho, Hung-Pin Chen, Din-Ping Tsai
  • Publication number: 20090246553
    Abstract: A reflective film is provided. The reflective film includes a substrate; a middle layer disposed on the substrate and mainly having a crystallized transition metal; and a metal layer disposed on the middle layer.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 1, 2009
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20090246514
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Application
    Filed: September 26, 2008
    Publication date: October 1, 2009
    Applicant: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20090098307
    Abstract: A manufacturing method for a far-infrared irradiating substrate is provided. The manufacturing method comprises steps of providing a substrate, providing a far-infrared irradiating material and evaporating the far-infrared irradiating material to form a thin film onto the substrate. The far-infrared irradiating substrate provided by the present invention not only has a high emission coefficient of far-infrared ray, but also do not cause a potential exposure of an ionizing radiation.
    Type: Application
    Filed: February 22, 2008
    Publication date: April 16, 2009
    Applicants: NATIONAL APPLIED RESEARCH LABORATORIES, TAIPEI MEDICAL UNIVERSITY
    Inventors: Po-Kai CHIU, Wen-Hao CHO, Han-Chang PAN, Yung-Sheng LIN, Ting-Kai LEUNG
  • Bus
    Patent number: D1003196
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: October 31, 2023
    Assignee: Foxtron Vehicle Technologies Co., Ltd.
    Inventors: Feng-Shuen Jiang, Po-Kai Chiu