Patents by Inventor Po-Kai Chiu

Po-Kai Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200203246
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Publication number: 20200117364
    Abstract: A device and a method for virtual storage are provided. The device includes a physical processor, a hypervisor and a physical storage. The hypervisor is executed on the physical processor and configured to create at least one client virtual machine and a controller virtual machine. The physical storage is clustered with physical storage of at least another device via the controller virtual machine to form a storage cluster. The controller virtual machine is further configured to define a virtual storage pool in the storage cluster and create at least one virtual storage controller virtual machine to interface the at least one client virtual machine with the virtual storage pool so that the at least one client virtual machine accesses the virtual storage pool via the at least one virtual storage controller virtual machine and the controller virtual machine. The method is applied to the device to implement the operations.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Cheng-Yue Chang, Jian-Ying Chen, Yung-Hua Chu, Kuan-Kai Chiu, Po-Hsun Yen, Tsung-Lin Yu, Ming-Xun Zhong
  • Patent number: 10622274
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 14, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Patent number: 10558359
    Abstract: A device and a method for virtual storage are provided. The device includes a physical processor, a hypervisor and a physical storage. The hypervisor is executed on the physical processor and configured to create at least one client virtual machine and a controller virtual machine. The physical storage is clustered with physical storage of at least another device via the controller virtual machine to form a storage cluster. The controller virtual machine is further configured to define a virtual storage pool in the storage cluster and create at least one virtual storage controller virtual machine to interface the at least one client virtual machine with the virtual storage pool so that the at least one client virtual machine accesses the virtual storage pool via the at least one virtual storage controller virtual machine and the controller virtual machine. The method is applied to the device to implement the operations.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 11, 2020
    Assignee: SILICON MOTION TECHNOLOGY (HONG KONG) LTD.
    Inventors: Cheng-Yue Chang, Jian-Ying Chen, Yung-Hua Chu, Kuan-Kai Chiu, Po-Hsun Yen, Tsung-Lin Yu, Ming-Xun Zhong
  • Patent number: 10396243
    Abstract: A light-emitting device includes: a rectangular shape with a first side, a second side opposite to the first side, and a third side connecting the first side and the second side; a light-emitting stack, comprising a lower semiconductor layer, an upper semiconductor layer, and an active layer between the lower semiconductor layer and the upper semiconductor layer; a first electrode formed on the lower semiconductor layer, comprising a first electrode pad and a first extension electrode; a second electrode formed on the upper semiconductor layer, comprising a second electrode pad and a second extension electrode; and a first current blocking layer formed between the lower semiconductor layer and the first electrode pad, wherein the first current blocking layer comprises a top surface and side surfaces; wherein the first electrode pad covers the top surface and the side surfaces of the first current blocking layer and contacts the lower semiconductor layer.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 27, 2019
    Assignee: Epistar Corporation
    Inventors: Chien-Kai Chung, Po-Shun Chiu, Hsin-Ying Wang, De-Shan Kuo, Tsun-Kai Ko, Yu-Ting Huang
  • Publication number: 20190109064
    Abstract: A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
    Type: Application
    Filed: May 11, 2018
    Publication date: April 11, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Kuo-Shu Kao, Tao-Chih Chang, Wen-Chih Chen, Tai-Jyun Yu, Po-Kai Chiu, Yen-Ting Lin, Wei-Kuo Han
  • Publication number: 20160195656
    Abstract: A structure of an ultraviolet light polarization component and a manufacturing process thereof, where a multi-layer thin film structure set is plated on a transparent falt substrate, and the multi-layer structure setis composed of a low refractive index thin film layer stacked for N times and a high refractive index thin film layer. The violet light is polarized into two polarization lights through the ultraviolet light polarization component, in which the two violet lights have a polarization ratio of larger than 10, so that the technical efficacy of realization of a small volume optical component and a large incident angle of the ultraviolet light.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 7, 2016
    Inventors: Po-Kai CHIU, Chih-Hao ZENG, Don-Yau CHIANG, Chien-Yue CHEN, Chien-Nan HSIAO, Fong-Zhi CHEN
  • Publication number: 20130256262
    Abstract: An in situ manufacturing process monitoring system of extreme smooth thin film and method thereof, comprising a coating device for coating a thin film on at least one substrate during a coating process, an ion figuring device for processing a surface polishing process on the thin film, a control device electrically coupled to the coating device and the ion figuring device respectively for controlling the coating device and the ion figuring device processing the coating process and surface polishing process by adjusting at least one device parameter of the coating device and the ion figuring device, and an in situ monitoring device electrically coupled to the control device for in situ monitoring at least one optical parameter of the thin film.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 3, 2013
    Applicant: National Applied Research Laboratories
    Inventors: Chien-Nan Hsiao, Po-Kai Chiu, Da-Ren Liu, James Su, Fong-Zhi Chen
  • Publication number: 20130146134
    Abstract: The present invention discloses a solar cell with a nanolaminated transparent electrode and a method of manufacturing the same. The solar cell comprises a substrate, a first electrode layer deposited on the substrate, a photovoltaic layer deposited on the first electrode layer, and a second electrode layer deposited on the photovoltaic layer. Wherein, at least one of the first and second electrode layers is a nanolaminated transparent electrode prepared by using atomic layer deposition (ALD). The nanolaminated transparent electrode may serve as both of the transparent electrode and the anti-reflective layer and is able to maintain good transmittance in infrared wavelength.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 13, 2013
    Applicant: National Applied Research Laboratories
    Inventors: CHIEN-NAN HSIAO, Chih-Chieh Yu, Po-Kai Chiu, Chi-Chung Kei, Don-Yau Chiang
  • Patent number: 8236433
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 7, 2012
    Assignee: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20110250414
    Abstract: A novel TCO coating and its manufacturing method are disclosed. The TCO coating of the present invention consists of titanium oxide, silicon oxide and metal. The TCO coating is manufactured according to electromagnetic field simulation software basing on the Maxwell Equations. Because the manufacturing method (including steam plating and sputter plating) of the present invention may be carried out under the room temperature, base boards that are made of polymer and that can not withstand high temperatures may be used and hence base boards may have wider applications. Also, less time is needed in the production, production cost is lowered and mass-production may be achieved.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Applicant: INSTRUMENT TECHNOLOGY RESEARCH CENTER, NATIONAL APPLIED RESEARCH LABORATORY
    Inventors: Po-Kai Chiu, Shu-Te Ho, Bo-Heng Liou, Chien-Nan Hsiao, Wen-Hao Cho, Hung-Pin Chen, Din-Ping Tsai
  • Publication number: 20090246553
    Abstract: A reflective film is provided. The reflective film includes a substrate; a middle layer disposed on the substrate and mainly having a crystallized transition metal; and a metal layer disposed on the middle layer.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 1, 2009
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20090246514
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Application
    Filed: September 26, 2008
    Publication date: October 1, 2009
    Applicant: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20090098307
    Abstract: A manufacturing method for a far-infrared irradiating substrate is provided. The manufacturing method comprises steps of providing a substrate, providing a far-infrared irradiating material and evaporating the far-infrared irradiating material to form a thin film onto the substrate. The far-infrared irradiating substrate provided by the present invention not only has a high emission coefficient of far-infrared ray, but also do not cause a potential exposure of an ionizing radiation.
    Type: Application
    Filed: February 22, 2008
    Publication date: April 16, 2009
    Applicants: NATIONAL APPLIED RESEARCH LABORATORIES, TAIPEI MEDICAL UNIVERSITY
    Inventors: Po-Kai CHIU, Wen-Hao CHO, Han-Chang PAN, Yung-Sheng LIN, Ting-Kai LEUNG