Patents by Inventor Po-Wen Chiang

Po-Wen Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722695
    Abstract: An optical network unit (ONU) includes an optical transceiver module, a switch, a detecting module, and an ONU chip. The switch is electronically coupled between the optical transceiver module and a power supply. The detecting module is electronically coupled between the switch and the power supply. The detecting module includes a sensor, an amplifier, and a comparator. The sensor is electronically coupled between the power supply and the switch to sense a driving current output from the power supply to the optical transceiver module and output a voltage signal to the amplifier, the amplifier amplifies the voltage signal and outputs an amplified voltage signal to the comparator, the comparator compares the amplified voltage signal with a predetermined voltage signal and outputs a comparison result. The ONU chip controls the switch to connect/disconnect the electrical connection between the optical transceiver module and the power supply according to the comparison result.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: August 1, 2017
    Assignees: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Po-Wen Chiang
  • Publication number: 20170026112
    Abstract: An optical network unit (ONU) includes an optical transceiver module, a switch, a detecting module, and an ONU chip. The switch is electronically coupled between the optical transceiver module and a power supply. The detecting module is electronically coupled between the switch and the power supply. The detecting module includes a sensor, an amplifier, and a comparator. The sensor is electronically coupled between the power supply and the switch to sense a driving current output from the power supply to the optical transceiver module and output a voltage signal to the amplifier, the amplifier amplifies the voltage signal and outputs an amplified voltage signal to the comparator, the comparator compares the amplified voltage signal with a predetermined voltage signal and outputs a comparison result. The ONU chip controls the switch to connect/disconnect the electrical connection between the optical transceiver module and the power supply according to the comparison result.
    Type: Application
    Filed: November 20, 2015
    Publication date: January 26, 2017
    Inventor: PO-WEN CHIANG
  • Patent number: 6817759
    Abstract: A method that utilizes a short sampling interval and a long-pulsewidth laser source to obtain the long sensing range and employs a signal processing technique of decomposing Brillouin spectrum to achieve high spatial resolution, high temperature resolution of the distributed temperature measurement is disclosed. The present method includes the steps of measuring the Brillouin spectra of an optical pulse applying to a sensing fiber and a overlapped area thereof, determining the length that the pulse enters according to the measured Brillouin spectra and a weighting factor and then determining a real Brillouin spectrum profile and a temperature distribution according to Brillouin frequency shifts thereof. For a 9500-m sensing range of standard single-mode fiber and a 100-ns pulsewidth laser source, spatial and positon resolutions of 20 cm and a temperature resolution of 1° C. are simultaneously achieved by using this signal processing method.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 16, 2004
    Assignee: National Chiao Tung University
    Inventors: Sien Chi, Chien-Chung Lee, Po-Wen Chiang
  • Patent number: 6698919
    Abstract: A method that utilizes a dispersion-shifted fiber having compound compositions with different temperature coefficients in core to simultaneously measure the distributed strain and temperature based on Brillouin frequency shift is disclosed. The present method includes the steps of obtaining mean two peak frequencies in a multi-peak Brillouin spectrum of the dispersion-shifted fiber, determining a temperature change according to the formula of a Brillouin frequency shift of the peak relating to strain and temperature conditions of the fiber, and determining a strain change through the formula. In a 3682-m sensing length of Large-Effective-Area NZ-DS fiber, a temperature resolution of 5° C., a strain resolution of 60 &mgr;&egr; and a spatial resolution of 2 m are achieve simultaneously.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: March 2, 2004
    Assignee: National Chiao Tung University
    Inventors: Sien Chi, Chien-Chung Lee, Po-Wen Chiang
  • Publication number: 20030103549
    Abstract: A method that utilizes a dispersion-shifted fiber having compound compositions with different temperature coefficients in core to simultaneously measure the distributed strain and temperature based on Brillouin frequency shift is disclosed. The present method includes the steps of obtaining mean two peak frequencies in a multi-peak Brillouin spectrum of the dispersion-shifted fiber, determining a temperature change according to the formula of a Brillouin frequency shift of the peak relating to strain and temperature conditions of the fiber, and determining a strain change through the formula. In a 3682-m sensing length of Large-Effective-Area NZ-DS fiber, a temperature resolution of 5° C., a strain resolution of 60 &mgr;&egr; and a spatial resolution of 2 m are achieve simultaneously.
    Type: Application
    Filed: April 9, 2002
    Publication date: June 5, 2003
    Inventors: Sien Chi, Chien-Chung Lee, Po-Wen Chiang
  • Publication number: 20030103552
    Abstract: A method that utilizes a short sampling interval and a long-pulsewidth laser source to obtain the long sensing range and employs a signal processing technique of decomposing Brillouin spectrum to achieve high spatial resolution, high temperature resolution of the distributed temperature measurement is disclosed. The present method includes the steps of measuring the Brillouin spectra of an optical pulse applying to a sensing fiber and a overlapped area thereof, determining the length that the pulse enters according to the measured Brillouin spectra and a weighting factor and then determining a real Brillouin spectrum profile and a temperature distribution according to Brillouin frequency shifts thereof. For a 9500-m sensing range of standard single-mode fiber and a 100-ns pulsewidth laser source, spatial and positon resolutions of 20 cm and a temperature resolution of 1° C. are simultaneously achieved by using this signal processing method.
    Type: Application
    Filed: April 9, 2002
    Publication date: June 5, 2003
    Inventors: Sien Chi, Chien-Chung Lee, Po-Wen Chiang