Patents by Inventor Po-Ya Abel Chuang

Po-Ya Abel Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230001402
    Abstract: A method of fabricating a catalyst material comprises forming or receiving a precursor solution of an iridium precursor compound, adding a 3d orbital transition metal to the precursor solution, adding a surfactant compound to the precursor solution to provide a precursor and surfactant mixture, reacting the iridium precursor compound with a nitrate salt of an alkaline metal cation to provide a reaction product comprising an iridium nitrate, and calcining the iridium nitrate at a specified calcination temperature to convert the iridium nitrate to form catalyst particles comprising an iridium oxide.
    Type: Application
    Filed: November 24, 2020
    Publication date: January 5, 2023
    Inventors: Guangfu Li, Po-Ya Abel Chuang
  • Patent number: 9853307
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: December 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yeh-Hung Lai, Pinkhas A. Rapaport, Po-Ya Abel Chuang, Wenbin Gu
  • Patent number: 9831511
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 28, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yeh-Hung Lai, Pinkhas A. Rapaport, Po-Ya Abel Chuang, Wenbin Gu
  • Publication number: 20140051004
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: YEH-HUNG LAI, PINKHAS A. RAPAPORT, PO-YA ABEL CHUANG, WENBIN GU
  • Publication number: 20140051005
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yeh-Hung Lai, Pinkhas A. Rapaport, Po-Ya Abel Chuang, Wenbin Gu
  • Patent number: 8323842
    Abstract: A method of operating a fuel cell is described. The method includes controlling the temperature of the anode plate and the temperature of the cathode plate to obtain a temperature difference of at least about 2° C. between the anode plate and the cathode plate. A fuel cell is also described.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Po-Ya Abel Chuang, Wenbin Gu, Scott G. Smith
  • Patent number: 8178259
    Abstract: A gas diffusion media is described. The gas diffusion media comprises a conductive porous substrate; and a microporous layer; wherein a cathode effective transport length is in a range of about 700 to about 1900 ?m; wherein an overall thermal resistance is in a range of about 1.8 to about 3.8 cm2-K/W; and wherein a ratio of the cathode effective transport length to an anode effective transport length is greater than about 2.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 15, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Po-Ya Abel Chuang, Wenbin Gu
  • Publication number: 20110192282
    Abstract: A gas diffusion media is described. The gas diffusion media comprises a conductive porous substrate; and a microporous layer; wherein a cathode effective transport length is in a range of about 700 to about 1900 ?m; wherein an overall thermal resistance is in a range of about 1.8 to about 3.8 cm2-K/W; and wherein a ratio of the cathode effective transport length to an anode effective transport length is greater than about 2.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 11, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Po-Ya Abel Chuang, Wenbin Gu
  • Publication number: 20110143262
    Abstract: A fuel cell includes a first electrically conductive plate and a first gas diffusion layer. The first gas diffusion layer is disposed over the first electrically conductive plate. Characteristically, the first gas diffusion layer comprises a first fibrous sheet having fibers coated with an electrically conductive layer. A first catalyst layer is disposed over the first gas diffusion layer and an ion conducting membrane is disposed over the first catalyst layer. The fuel cell also includes a second catalyst layer disposed over the ion conducting membrane with a second gas diffusion layer disposed over the second catalyst layer. A second electrically conductive plate is disposed over the second gas diffusion layer. Methods for forming the gas diffusion layers and the fuel cell are also provided.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Derek W. Fultz, Paul D. Nicotera, Thomas A. Trabold, Gayatri Vyas Dadheech, Po-Ya Abel Chuang
  • Publication number: 20110076583
    Abstract: A method of operating a fuel cell is described. The method includes controlling the temperature of the anode plate and the temperature of the cathode plate to obtain a temperature difference of at least about 2° C. between the anode plate and the cathode plate. A fuel cell is also described.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Po-Ya Abel Chuang, Wenbin Gu, Scott G. Smith
  • Patent number: 7829230
    Abstract: A method for optimizing a fuel cell diffusion media having a spatially varying mass transport resistance is provided. The method includes at least two passes where a first-pass D/Deff profile for the fuel cell diffusion media is provided and applied to a computational model of the fuel cell having a baseline variable profile. At least one first-pass variable profile resulting from the application of the first-pass D/Deff profile to the computational mode is calculated and compared to a desired variable range. The first-pass D/Deff profile is refined, if necessary, to provide a second-pass D/Deff profile. A relative performance of the fuel cell with a second-pass variable profile resulting from an application of the second-pass D/Deff profile is determined. The second-pass D/Deff profile is refined, if necessary, until the second-pass variable profile has a desirable performance. An effective D/Deff profile is thereby provided.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: November 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Torsten Berning, Christian Wieser, Po-Ya Abel Chuang, Thomas A. Trabold
  • Publication number: 20090024373
    Abstract: A method for optimizing a fuel cell diffusion media having a spatially varying mass transport resistance is provided. The method includes at least two passes where a first-pass D/Deff profile for the fuel cell diffusion media is provided and applied to a computational model of the fuel cell having a baseline variable profile. At least one first-pass variable profile resulting from the application of the first-pass D/Deff profile to the computational mode is calculated and compared to a desired variable range. The first-pass D/Deff profile is refined, if necessary, to provide a second-pass D/Deff profile. A relative performance of the fuel cell with a second-pass variable profile resulting from an application of the second-pass D/Deff profile is determined. The second-pass D/Deff profile is refined, if necessary, until the second-pass variable profile has a desirable performance. An effective D/Deff profile is thereby provided.
    Type: Application
    Filed: July 17, 2007
    Publication date: January 22, 2009
    Inventors: Torsten Berning, Christian Wieser, Po-Ya Abel Chuang, Thomas A. Trabold
  • Publication number: 20080299418
    Abstract: A fuel cell stack that includes a gas diffusion media for the end cells in the stack that has less of an intrusion into the flow field channels of the end cells that the other cells, so as to increase the flow rate through the flow channels in the end cells relative to the flow rate through the flow channels in the other cells. A different diffusion media can be used in the end cells than the nominal cells, where the end cell diffusion media has less of a channel intrusion as a result of diffusion media characteristics. Also, the same diffusion media could be used in the end cells as the nominal cells, but the end cell diffusion media layers could be thinner than the nominal cell diffusion media layers. Further, a higher amount of pre-compression can be used for the diffusion media in the end cells.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Yeh-Hung Lai, Pinkhas A. Rapaport, Po-Ya Abel Chuang, Wenbin Gu