Patents by Inventor Po-Ying Yeh

Po-Ying Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136183
    Abstract: A photo resist layer is used to protect a dielectric layer and conductive elements embedded in the dielectric layer when patterning an etch stop layer underlying the dielectric layer. The photo resist layer may further be used to etch another dielectric layer underlying the etch stop layer, where etching the next dielectric layer exposes a contact, such as a gate contact. The bottom layer can be used to protect the conductive elements embedded in the dielectric layer from a wet etchant used to etch the etch stop layer.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Yu-Shih Wang, Hong-Jie Yang, Chia-Ying Lee, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230149929
    Abstract: Disclosed herein are devices, methods, and systems for separating one or more biological particles from a fluid sample. The devices may comprise a substrate with a fluidic channel disposed therein. The fluidic channel has disposed therein an array of obstacles with a vertical spacing. The vertical spacing may be configured to separate one or more particles from a fluid stream when the stream flows through the fluidic channel. The devices, methods, and systems may be able to separate various types of biological particles at a high efficiency, sensitivity, and/or specificity.
    Type: Application
    Filed: September 16, 2022
    Publication date: May 18, 2023
    Inventors: Daojing WANG, Po Ying YEH
  • Patent number: 7399679
    Abstract: A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: July 15, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ming Sheu, Da-Wen Lin, Cheng-Ku Chen, Po-Ying Yeh, Shi-Shung Peng, Chung-Cheng Wu
  • Patent number: 7071515
    Abstract: A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: July 4, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ming Sheu, Da-Wen Lin, Cheng-Ku Chen, Po-Ying Yeh, Shi-Shung Peng, Chung-Cheng Wu
  • Publication number: 20060079068
    Abstract: A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
    Type: Application
    Filed: November 29, 2005
    Publication date: April 13, 2006
    Inventors: Yi-Ming Sheu, Da-Wen Lin, Cheng-Ku Chen, Po-Ying Yeh, Shi-Shung Peng, Chung-Cheng Wu
  • Publication number: 20050012173
    Abstract: A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 20, 2005
    Inventors: Yi-Ming Sheu, Da-Wen Lin, Cheng-Ku Chen, Po-Ying Yeh, Shi-Shung Peng, Chung-Cheng Wu