Patents by Inventor Ponharith Nhep

Ponharith Nhep has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520683
    Abstract: Aspects and techniques of the present disclosure relate to a fiber optic connector including a connector body defining a central longitudinal axis that extends in a front-to-rear orientation. The connector body can include a front connector housing piece and a rear connector housing piece that may be aligned along the central longitudinal axis. A front end of the rear connector housing piece can be adapted to connect with a rear plug end of the front connector housing piece. The rear end of the rear connector housing piece can include a unitary fiber bend radius limiting structure. The unitary fiber bend radius limiting structure can be generally funnel-shaped. A ferrule assembly can be captured between the front and rear connector housing pieces with the rear connector housing piece functioning as a rear spring stop.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: December 31, 2019
    Assignee: Commscope Connectivity Belgium BVBA
    Inventor: Ponharith Nhep
  • Patent number: 10495822
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 3, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Ponharith Nhep
  • Patent number: 10473876
    Abstract: A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: November 12, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Steven C. Zimmel, Trevor D. Smith, Ponharith Nhep
  • Publication number: 20190265414
    Abstract: The present disclosure relates to a splice-on connector configuration having connector body defining a forward fiber buckling region and a rearward splice encapsulation region. The splice encapsulation region can be filled with curable adhesive. The splice encapsulation region can also function to anchor a fiber optic cable.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Applicant: CommScope Technologies LLC
    Inventors: Ponharith NHEP, Yu LU
  • Patent number: 10371899
    Abstract: The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector includes a connector body and ferrule assembly mounted in the connector body. A spring is positioned within the connector body for biasing the ferrule assembly in a forward direction. The spring has a first spring length when the ferrule assembly is in a forwardmost position. A rear housing of the connector body includes a front extension that fits inside a rear end of the spring, the front extension having a front extension length. The fiber optic connector defines a gap between the front extension and a ferrule hub of the ferrule assembly, the gap having a first dimension measured between the front extension and the ferrule hub when the ferrule assembly is in the forwardmost position, the front extension length being longer than the first dimension.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 6, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Ponharith Nhep, Patrick Nault
  • Patent number: 10359591
    Abstract: A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 23, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Steven C. Zimmel, Ponharith Nhep, Trevor D. Smith
  • Patent number: 10353154
    Abstract: A fiber optic cable and connector assembly including a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including a stub fiber supported within a ferrule. The stub fiber is fusion spliced to an optical fiber of the fiber optic cable at a location within the fiber optic connector.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 16, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Michael James Ott, Thomas P. Huegerich, Steven C. Zimmel, Ponharith Nhep
  • Publication number: 20190162911
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventor: Ponharith Nhep
  • Patent number: 10281649
    Abstract: The present disclosure relates to a splice-on connector configuration having connector body defining a forward fiber buckling region and a rearward splice encapsulation region. The splice encapsulation region can be filled with curable adhesive. The splice encapsulation region can also function to anchor a fiber optic cable.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: May 7, 2019
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Ponharith Nhep, Yu Lu
  • Publication number: 20190041584
    Abstract: Aspects and techniques of the present disclosure relate to a fiber optic connector including a connector body defining a central longitudinal axis that extends in a front-to-rear orientation. The connector body can include a front connector housing piece and a rear connector housing piece that may be aligned along the central longitudinal axis. A front end of the rear connector housing piece can be adapted to connect with a rear plug end of the front connector housing piece. The rear end of the rear connector housing piece can include a unitary fiber bend radius limiting structure. The unitary fiber bend radius limiting structure can be generally funnel-shaped. A ferrule assembly can be captured between the front and rear connector housing pieces with the rear connector housing piece functioning as a rear spring stop.
    Type: Application
    Filed: September 13, 2016
    Publication date: February 7, 2019
    Inventors: Philippe COENEGRACHT, Alexandre Caroline M. DE BIE, Maddy Nadine FREDERICKX, Paul Joseph CLAES, Geert GENECHTEN, Mohamed AZNAG, Diederik HOUBEN, Ponharith NHEP
  • Publication number: 20180364424
    Abstract: The present disclosure relates to a field installable connector system. The connector system includes a factory terminated subassembly including a ferrule terminating an optical fiber of an optical fiber cable. The factory terminated subassembly has a small transverse cross-section to facilitate routing through a duct. The connector system also includes a field installable subassembly including various connector components that can be installed after the factory terminated subassembly has been routed through a duct. The components can be sealed and hardened.
    Type: Application
    Filed: December 15, 2016
    Publication date: December 20, 2018
    Inventors: Michael James OTT, Yu LU, Ponharith NHEP
  • Publication number: 20180364434
    Abstract: A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
    Type: Application
    Filed: May 7, 2018
    Publication date: December 20, 2018
    Inventors: Steven C. Zimmel, Ponharith Nhep, Trevor D. Smith
  • Publication number: 20180348447
    Abstract: A factory processed and assembled optical fiber arrangement is configured to pass through tight, tortuous spaces when routed to a demarcation point. A connector housing attaches to the optical fiber arrangement at the demarcation point (or after leaving the tight, tortuous spaces) to form a connectorized end of the optical fiber. A fiber tip is protected before leaving the factory until connection is desired.
    Type: Application
    Filed: November 30, 2016
    Publication date: December 6, 2018
    Inventors: Ponharith NHEP, Michael James OTT
  • Patent number: 10146011
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 4, 2018
    Assignee: CommScope Technologies LLC
    Inventor: Ponharith Nhep
  • Publication number: 20180267243
    Abstract: The present disclosure relates to a splice-on connector configuration having connector body defining a forward fiber buckling region and a rearward splice encapsulation region. The splice encapsulation region can be filled with curable adhesive. The splice encapsulation region can also function to anchor a fiber optic cable.
    Type: Application
    Filed: August 30, 2016
    Publication date: September 20, 2018
    Inventors: Ponharith NHEP, Yu LU
  • Publication number: 20180164509
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Inventor: Ponharith Nhep
  • Patent number: 9989711
    Abstract: A fiber optic connector and cable assembly is disclosed. The assembly includes a fiber optic connector and a fiber optic cable. The fiber optic cable can be coupled to the assembly at a demarcation section. All components of the fiber optic cable (e.g., fiber, strength members, jacket, etc.) are fixed relative to each other and relative to the fiber optic connector at the demarcation section. The demarcation section may be located on a boot mounted at a proximal end of the fiber optic connector. For example, the demarcation section may be located at a proximal end of the boot.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 5, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Michael James Ott, Ponharith Nhep
  • Patent number: 9964726
    Abstract: A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are mounted to a removable holder. A method of mounting a telecommunications module within a chassis.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: May 8, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Steven C. Zimmel, Ponharith Nhep, Trevor D. Smith
  • Patent number: 9841566
    Abstract: A connector includes a ferrule assembly having a ferrule, a hub and a spring, the ferrule having a distal face accessible at a distal end of the connector housing, the ferrule being movable in a proximal direction relative to the connector housing. The distal and proximal positions are separated by an axial displacement distance. The ferrule proximal movement is against the spring's bias. The cable of the assembly includes an optical fiber contained within a jacket and also a strength layer between the fiber and the jacket that is anchored to the connector housing. The fiber extends through a fiber from the proximal end of the connector housing to the ferrule. The fiber has a distal portion potted within the ferrule. The fiber passage has a fiber take-up region configured to take-up an excess length of the fiber corresponding to the ferrule axial displacement.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: December 12, 2017
    Assignee: CommScope Technologies LLC
    Inventor: Ponharith Nhep
  • Publication number: 20170336573
    Abstract: The present disclosure relates to a fiber optic connector and cable assembly. The fiber optic connector includes a connector body and ferrule assembly mounted in the connector body. A spring is positioned within the connector body for biasing the ferrule assembly in a forward direction. The spring has a first spring length when the ferrule assembly is in a forwardmost position. A rear housing of the connector body includes a front extension that fits inside a rear end of the spring, the front extension having a front extension length. The fiber optic connector defines a gap between the front extension and a ferrule hub of the ferrule assembly, the gap having a first dimension measured between the front extension and the ferrule hub when the ferrule assembly is in the forwardmost position, the front extension length being longer than the first dimension.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 23, 2017
    Inventors: Ponharith Nhep, Patrick Nault