Patents by Inventor Praburam Gopalraja
Praburam Gopalraja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11798606Abstract: One or more embodiments described herein generally relate to patterning semiconductor film stacks. Unlike in conventional embodiments, the film stacks herein are patterned without the need of etching the magnetic tunnel junction (MTJ) stack. Instead, the film stack is etched before the MTJ stack is deposited such that the spin on carbon layer and the anti-reflective coating layer are completely removed and a trench is formed within the dielectric capping layer and the oxide layer. Thereafter, MTJ stacks are deposited on the buffer layer and on the dielectric capping layer. An oxide capping layer is deposited such that it covers the MTJ stacks. An oxide fill layer is deposited over the oxide capping layer and the film stack is polished by chemical mechanical polishing (CMP). The embodiments described herein advantageously result in no damage to the MTJ stacks since etching is not required.Type: GrantFiled: May 24, 2021Date of Patent: October 24, 2023Assignee: APPLIED MATERIALS, INC.Inventors: John O. Dukovic, Srinivas D. Nemani, Ellie Y. Yieh, Praburam Gopalraja, Steven Hiloong Welch, Bhargav S. Citla
-
Patent number: 11315943Abstract: Methods of forming memory structures are described. A metal film is deposited in the features of a structured substrate and volumetrically expanded to form pillars. A blanket film is deposited to a height less than the height of the pillars and the blanket film is removed from the top of the pillars. The height of the pillars is reduced so that the top of the pillars are below the surface of the blanket film and the process is optionally repeated to form a structure of predetermined height. The pillars can be removed from the features after formation of the predetermined height structure to form high aspect ratio features.Type: GrantFiled: August 28, 2018Date of Patent: April 26, 2022Assignee: APPLIED MATERIALS, INC.Inventors: Praburam Gopalraja, Susmit Singha Roy, Abhijit Basu Mallick, Srinivas Gandikota
-
Patent number: 11177164Abstract: Processing methods to form self-aligned high aspect ratio features are described. The methods comprise depositing a metal film on a structured substrate, volumetrically expanding the metal film, depositing a second film between the expanded pillars and optionally recessing the pillars and repeating the process to form the high aspect ratio features.Type: GrantFiled: August 6, 2018Date of Patent: November 16, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Susmit Singha Roy, Praburam Gopalraja, Abhijit Basu Mallick, Srinivas Gandikota
-
Publication number: 20210305501Abstract: One or more embodiments described herein generally relate to patterning semiconductor film stacks. Unlike in conventional embodiments, the film stacks herein are patterned without the need of etching the magnetic tunnel junction (MTJ) stack. Instead, the film stack is etched before the MTJ stack is deposited such that the spin on carbon layer and the anti-reflective coating layer are completely removed and a trench is formed within the dielectric capping layer and the oxide layer. Thereafter, MTJ stacks are deposited on the buffer layer and on the dielectric capping layer. An oxide capping layer is deposited such that it covers the MTJ stacks. An oxide fill layer is deposited over the oxide capping layer and the film stack is polished by chemical mechanical polishing (CMP). The embodiments described herein advantageously result in no damage to the MTJ stacks since etching is not required.Type: ApplicationFiled: May 24, 2021Publication date: September 30, 2021Inventors: John O. DUKOVIC, Srinivas D. NEMANI, Ellie Y. YIEH, Praburam GOPALRAJA, Steven Hiloong WELCH, Bhargav S. CITLA
-
Patent number: 11049537Abstract: One or more embodiments described herein generally relate to patterning semiconductor film stacks. Unlike in conventional embodiments, the film stacks herein are patterned without the need of etching the magnetic tunnel junction (MTJ) stack. Instead, the film stack is etched before the MTJ stack is deposited such that the spin on carbon layer and the anti-reflective coating layer are completely removed and a trench is formed within the dielectric capping layer and the oxide layer. Thereafter, MTJ stacks are deposited on the buffer layer and on the dielectric capping layer. An oxide capping layer is deposited such that it covers the MTJ stacks. An oxide fill layer is deposited over the oxide capping layer and the film stack is polished by chemical mechanical polishing (CMP). The embodiments described herein advantageously result in no damage to the MTJ stacks since etching is not required.Type: GrantFiled: July 29, 2019Date of Patent: June 29, 2021Assignee: Applied Materials, Inc.Inventors: John O. Dukovic, Srinivas D. Nemani, Ellie Y. Yieh, Praburam Gopalraja, Steven Hiloong Welch, Bhargav S. Citla
-
Patent number: 10957518Abstract: A plasma reactor includes a processing chamber having a lower processing portion having an axis of symmetry and an array of cavities extending upwardly from the lower processing portion. A gas distributor couples plural gas sources to a plurality of gas inlets of the cavities, and the gas distributor includes a plurality of valves with each valve selectively connecting a respective gas inlet to one of the plural gas sources. Power is applied by an array of conductors that includes a respective conductor for each respective cavity with each conductor adjacent and surrounding a cavity. A power distributor couples a power source and the array of conductors, and the power distributor includes a plurality of switches with a switch for each respective conductor.Type: GrantFiled: March 24, 2020Date of Patent: March 23, 2021Assignee: Applied Materials, Inc.Inventors: Kartik Ramaswamy, Lawrence Wong, Steven Lane, Yang Yang, Srinivas D. Nemani, Praburam Gopalraja
-
Publication number: 20210050365Abstract: Methods of forming memory structures are described. A metal film is deposited in the features of a structured substrate and volumetrically expanded to form pillars. A blanket film is deposited to a height less than the height of the pillars and the blanket film is removed from the top of the pillars. The height of the pillars is reduced so that the top of the pillars are below the surface of the blanket film and the process is optionally repeated to form a structure of predetermined height. The pillars can be removed from the features after formation of the predetermined height structure to form high aspect ratio features.Type: ApplicationFiled: August 28, 2018Publication date: February 18, 2021Inventors: Praburam Gopalraja, Susmit Singha Roy, Abhijit Basu Mallick, Srinivas Gandikota
-
Publication number: 20210035619Abstract: One or more embodiments described herein generally relate to patterning semiconductor film stacks. Unlike in conventional embodiments, the film stacks herein are patterned without the need of etching the magnetic tunnel junction (MTJ) stack. Instead, the film stack is etched before the MTJ stack is deposited such that the spin on carbon layer and the anti-reflective coating layer are completely removed and a trench is formed within the dielectric capping layer and the oxide layer. Thereafter, MTJ stacks are deposited on the buffer layer and on the dielectric capping layer. An oxide capping layer is deposited such that it covers the MTJ stacks. An oxide fill layer is deposited over the oxide capping layer and the film stack is polished by chemical mechanical polishing (CMP). The embodiments described herein advantageously result in no damage to the MTJ stacks since etching is not required.Type: ApplicationFiled: July 29, 2019Publication date: February 4, 2021Inventors: John O. DUKOVIC, Srinivas D. NEMANI, Ellie Y. YIEH, Praburam GOPALRAJA, Steven Hiloong WELCH, Bhargav S. CITLA
-
Patent number: 10840186Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.Type: GrantFiled: July 25, 2019Date of Patent: November 17, 2020Assignee: Applied Materials, Inc.Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
-
Publication number: 20200312630Abstract: A plasma reactor includes a processing chamber having a lower processing portion having an axis of symmetry and an array of cavities extending upwardly from the lower processing portion. A gas distributor couples plural gas sources to a plurality of gas inlets of the cavities, and the gas distributor includes a plurality of valves with each valve selectively connecting a respective gas inlet to one of the plural gas sources. Power is applied by an array of conductors that includes a respective conductor for each respective cavity with each conductor adjacent and surrounding a cavity. A power distributor couples a power source and the array of conductors, and the power distributor includes a plurality of switches with a switch for each respective conductor.Type: ApplicationFiled: March 24, 2020Publication date: October 1, 2020Inventors: Kartik Ramaswamy, Lawrence Wong, Steven Lane, Yang Yang, Srinivas D. Nemani, Praburam Gopalraja
-
Publication number: 20200194304Abstract: Processing methods to form self-aligned high aspect ratio features are described. The methods comprise depositing a metal film on a structured substrate, volumetrically expanding the metal film, depositing a second film between the expanded pillars and optionally recessing the pillars and repeating the process to form the high aspect ratio features.Type: ApplicationFiled: August 6, 2018Publication date: June 18, 2020Inventors: Susmit Singha Roy, Praburam Gopalraja, Abhijit Basu Mallick, Srinivas Gandikota
-
Patent number: 10597785Abstract: Implementations described herein generally relate to metal oxide deposition in a processing chamber. More specifically, implementations disclosed herein relate to a combined chemical vapor deposition and physical vapor deposition chamber. Utilizing a single oxide metal deposition chamber capable of performing both CVD and PVD advantageously reduces the cost of uniform semiconductor processing. Additionally, the single oxide metal deposition system reduces the time necessary to deposit semiconductor substrates and reduces the foot print required to process semiconductor substrates. In one implementation, the processing chamber includes a gas distribution plate disposed in a chamber body, one or more metal targets disposed in the chamber body, and a substrate support disposed below the gas distribution plate and the one or more targets.Type: GrantFiled: September 13, 2017Date of Patent: March 24, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Anantha K. Subramani, Praburam Gopalraja, Tza-Jing Gung, Hari K. Ponnekanti, Philip Allan Kraus
-
Patent number: 10577689Abstract: In one implementation, a sputtering showerhead assembly is provided. The sputtering showerhead assembly comprises a faceplate comprising a sputtering surface comprising a target material and a second surface opposing the sputtering surface, wherein a plurality of gas passages extend from the sputtering surface to the second surface. The sputtering showerhead assembly comprises further comprises a backing plate positioned adjacent to the second surface of the faceplate. The backing plate comprises a first surface and a second surface opposing the first surface. The sputtering showerhead assembly has a plenum defined by the first surface of the backing plate and the second surface of the faceplate. The sputtering showerhead assembly comprises further comprises one or more magnetrons positioned along the second surface of the backing plate.Type: GrantFiled: September 14, 2017Date of Patent: March 3, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Anantha K. Subramani, Tza-Jing Gung, Praburam Gopalraja, Hari K. Ponnekanti
-
Publication number: 20190348368Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.Type: ApplicationFiled: July 25, 2019Publication date: November 14, 2019Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
-
Patent number: 10403542Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.Type: GrantFiled: June 8, 2018Date of Patent: September 3, 2019Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
-
Publication number: 20180358260Abstract: A first metallization layer comprises a set of first conductive lines that extend along a first direction on a first dielectric layer on a substrate. Pillars are formed on recessed first dielectric layers and a second dielectric layer covers the pillars. A dual damascene etch provides a contact hole through the second dielectric layer and an etch removes the pillars to form air gaps.Type: ApplicationFiled: June 8, 2018Publication date: December 13, 2018Inventors: Susmit Singha Roy, Ziqing Duan, Abhijit Basu Mallick, Praburam Gopalraja
-
Publication number: 20180327893Abstract: A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target.Type: ApplicationFiled: July 11, 2018Publication date: November 15, 2018Inventors: Peijun DING, Rong TAO, Zheng XU, Daniel C. LUBBEN, Suraj RENGARAJAN, Michael A. MILLER, Arvind SUNDARRAJAN, Xianmin TANG, John C. FORSTER, Jianming FU, Roderick C. MOSELY, Fusen CHEN, Praburam GOPALRAJA
-
Patent number: 10047430Abstract: A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target.Type: GrantFiled: March 11, 2014Date of Patent: August 14, 2018Assignee: APPLIED MATERIALS, INC.Inventors: Peijun Ding, Rong Tao, Zheng Xu, Daniel C. Lubben, Suraj Rengarajan, Michael A. Miller, Arvind Sundarrajan, Xianmin Tang, John C. Forster, Jianming Fu, Roderick C. Mosely, Fusen Chen, Praburam Gopalraja
-
Patent number: 9978596Abstract: The present disclosure provides forming nanostructures with precision dimension control and minimum lithographic related errors for features with dimension under 14 nanometers and beyond. A self-aligned multiple spacer patterning (SAMSP) process is provided herein and the process utilizes minimum lithographic exposure process, but rather multiple deposition/etching process to incrementally reduce feature sizes formed in the mask along the manufacturing process, until a desired extreme small dimension nanostructures are formed in a mask layer.Type: GrantFiled: December 13, 2016Date of Patent: May 22, 2018Assignee: Applied Materials, Inc.Inventors: Ying Zhang, Uday Mitra, Praburam Gopalraja, Srinivas D. Nemani, Hua Chung
-
Publication number: 20180087155Abstract: In one implementation, a sputtering showerhead assembly is provided. The sputtering showerhead assembly comprises a faceplate comprising a sputtering surface comprising a target material and a second surface opposing the sputtering surface, wherein a plurality of gas passages extend from the sputtering surface to the second surface. The sputtering showerhead assembly comprises further comprises a backing plate positioned adjacent to the second surface of the faceplate. The backing plate comprises a first surface and a second surface opposing the first surface. The sputtering showerhead assembly has a plenum defined by the first surface of the backing plate and the second surface of the faceplate. The sputtering showerhead assembly comprises further comprises one or more magnetrons positioned along the second surface of the backing plate.Type: ApplicationFiled: September 14, 2017Publication date: March 29, 2018Inventors: Anantha K. SUBRAMANI, Tza-Jing GUNG, Praburam GOPALRAJA, Hari K. PONNEKANTI