Patents by Inventor Pradeep Bhardwaj

Pradeep Bhardwaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9250714
    Abstract: Described herein are optical proximity detectors, methods for use therewith, and systems including an optical proximity detector. Such optical proximity detectors include an analog front-end and a digital back-end. In certain embodiments, the digital back-end includes a dynamic gain and phase offset corrector, a cross-talk corrector, a phase and magnitude calculator, and a static phase offset corrector. The dynamic gain and phase offset corrector corrects for dynamic variations in gain and phase offset of the analog front-end due to changes in temperature and/or operating voltage levels. The crosstalk corrector corrects for electrical and/or optical crosstalk associated with the analog front-end. The phase and magnitude calculator calculates phase and magnitude values in dependence on the corrected versions of digital in-phase and quadrature-phase signals received from the analog front-end. The static phase offset corrector corrects for a static phase offset of the optical proximity detector.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 2, 2016
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Itaru Hiromi, Philip V. Golden, David W. Ritter, Pradeep Bhardwaj, Steven Herbst, Warren Craddock
  • Publication number: 20150145764
    Abstract: Described herein are optical proximity detectors, methods for use therewith, and systems including an optical proximity detector. Such optical proximity detectors include an analog front-end and a digital back-end. In certain embodiments, the digital back-end includes a dynamic gain and phase offset corrector, a cross-talk corrector, a phase and magnitude calculator, and a static phase offset corrector. The dynamic gain and phase offset corrector corrects for dynamic variations in gain and phase offset of the analog front-end due to changes in temperature and/or operating voltage levels. The crosstalk corrector corrects for electrical and/or optical crosstalk associated with the analog front-end. The phase and magnitude calculator calculates phase and magnitude values in dependence on the corrected versions of digital in-phase and quadrature-phase signals received from the analog front-end. The static phase offset corrector corrects for a static phase offset of the optical proximity detector.
    Type: Application
    Filed: September 24, 2014
    Publication date: May 28, 2015
    Inventors: Itaru Hiromi, Philip V. Golden, David W. Ritter, Pradeep Bhardwaj, Steven Herbst
  • Publication number: 20110184162
    Abstract: The present invention relates to a method for rapid isolation of RNA. More particularly, it relates to a method for isolation of RNA using two-solution system. The present invention also relates to a RNA isolation kit.
    Type: Application
    Filed: July 31, 2006
    Publication date: July 28, 2011
    Applicant: Council of Scientific and Industrial Research
    Inventors: Sanjay Ghawana, Kashmir Singh, Jyoti Raizada, Arti Rani, Kumar Pradeep Bhardwaj, Sanjay Kumar
  • Patent number: 6497146
    Abstract: Inertial rate sensor and method in which in which a single output terminal is utilized for delivering a rate output signal during normal operation, interfacing with an external computer during a programming mode, and for providing a warning in the event of a failure. Access to the programming mode is permitted only when a predetermined sequence of conditions is met, and accidental initiation of the programming mode is virtually impossible. Compensation data is stored redundantly at two locations in an internal memory, and the data is read from both locations and compared to verify its validity. Signals are monitored at different points to detect the occurrence of failures.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: December 24, 2002
    Assignee: BEI Technologies, Inc.
    Inventors: Larry P. Hobbs, Pradeep Bhardwaj
  • Patent number: 5942686
    Abstract: Ratiometric transducer and method in which the outputsnal is linearly proportional to the supply voltage or level of excitation. A drive circuit applies a drive signal to an element which undergoes a change in accordance with a condition to be monitored (e.g., rotation or acceleration), and a pickup circuit receives signals from the element and provides an output signal corresponding to the condition to be monitored. Operating voltage is supplied to the drive circuit from a power supply, and the gain of the drive circuit is adjusted in accordance with variations in the operating voltage to make the drive signal and the output signal proportional to the operating voltage.
    Type: Grant
    Filed: September 15, 1994
    Date of Patent: August 24, 1999
    Assignee: BEI Electronics, Inc.
    Inventor: Pradeep Bhardwaj
  • Patent number: 5185585
    Abstract: Crystal oscillator and method which in one embodiment have a crystal element connected in a positive feedback loop with a charge amplifier and an integrator, with the gain of the loop being maintained at a level of unity. Compensation is provided to offset the effects of shunt capacitance in the crystal element, and precise phase control is maintained around the loop. In other embodiments, a crystal element is connected in a series feedback loop with a buffer amplifier, and operation is provided by maintaining the oscillation signal at level at which distortion, clipping, and saturation do not occur. Compensation for shunt capacitance across the crystal element is provided by applying a compensation signal which is equal in amplitude but opposite in phase to the signal passing through the shunt capacitance to the input terminal of the buffer amplifier to cancel the effect of the shunt capacitance.
    Type: Grant
    Filed: September 10, 1991
    Date of Patent: February 9, 1993
    Assignee: New SD, Inc.
    Inventors: Gerald R. Newell, Michael W. Nootbaar, Pradeep Bhardwaj, Robert C. Willson
  • Patent number: 5150121
    Abstract: A voltage-to-frequency converter provides an output signal, the frequency of which is proportional to the instantaneous level of a reference-frequency signal, which is proportional to the output signal of a parameter-sensing circuit. An up-down frequency counter counts the output pulses of the voltage-to-frequency converter. An up-down control terminal coupled to the reference-frequency signal switches the counting direction of the up-down counter to demodulate the output signal of the voltage-to-frequency converter and to provide a digital output signal representative of the time integral of the amplitude of the parameter being sensed.An undersired input signal is reduced by subtracting a cancellation signal having the format of the undesired signal from the undesired input signal. The filter includes a subtractor, or difference circuit, the output of which is coupled to a voltage-to-frequency converter.
    Type: Grant
    Filed: September 14, 1990
    Date of Patent: September 22, 1992
    Assignee: New SD, Inc.
    Inventors: Gerald R. Newell, Pradeep Bhardwaj
  • Patent number: 5047734
    Abstract: A series-feedback crystal oscillator has a crystal element in series with a buffer amplifier. The oscillator maintains a linear oscillation signal by using an amplitude control circuit to hold the oscillation signal to a certain level at which distortion, clipping, or saturation does not occur. A control signal indicative of the amplitude of the oscillation signal linearly multiplies the oscillation signal to control the amplitude of the oscillation signal. Shunt capacitance across the crystal is compensated for by connecting a compensating capacitor to the same input terminal of the buffer amplifier as is connected the crystal. A compensating signal, which is equal in amplitude but opposite in phase to the signal passing through the shunt capacitance of the crystal is fed to the input terminal of the buffer amplifier to cancel the effect of the shunt capacitance. A noninverted tracer signal is injected in the feedback loop and passes through the shunt capacitance.
    Type: Grant
    Filed: May 30, 1990
    Date of Patent: September 10, 1991
    Assignee: New SD, Inc.
    Inventors: Gerald R. Newell, Michael W. Nootbaar, Pradeep Bhardwaj
  • Patent number: 4980687
    Abstract: An analog baseband signal modulates a reference-frequency carrier signal to provide a double-sideband, suppressed-carrier DSB-SC signal. The DSB-SC signal is converted in a voltage-to-frequency converter to a series of pulses, which are demodulated to produce a digitally formatted version of the baseband signal. A notch filter for rejecting an undesired analog signal includes a voltage-to-frequency converter and a selective feedback path which demodulates the undesired signal from a frequency-encoded domain back to the analog domain for a cancellation in a summer preceding the voltage-to-frequency converter.
    Type: Grant
    Filed: October 13, 1988
    Date of Patent: December 25, 1990
    Assignee: Systron Donner
    Inventors: Gerald R. Newell, Pradeep Bhardwaj